The complex of Tb(TPTZ)Cl(3).3H(2)O was synthesized by adding the ethyl alcohol solution of TbCl(3) (1 mmol) to the solution of 2,4,6-tris-(2-pyridyl)-s-triazine(TPTZ, 1 mmol) with constant stirring. The solution which had been filtered was kept at the room temperature for 4 weeks, and then a kind of transparent crystal was formed. Besides, nine kinds of solid complexes in the different molar proportion of terbium to gadolinium had been synthesized by adopting the similar method mentioned above. It was inferred from the elemental analysis and rare earth complexometry that the composition of these complexes is (Tb(x)Gd(y))(TPTZ)Cl(3).3H(2)O (x : y = 0.9 : 0.1, 0.8 : 0.2, 0.7 : 0.3, 0.6 : 0.4, 0.5 : 0.5, 0.4 : 0.6, 0.3 : 0.7, 0.2 : 0.8, 0.1 : 0.9). The absorption spectra and photoluminescence of the complexes were determined in dimethylsulfoxide (DMF), which showed that the excitation of the complexes is mostly ligand based. The triplet state energy level of TPTZ was measured, indicating that the lowest excitation state energy level of Tb(III) and the triplet state energy level of TPTZ match well each other. The fluorescent data indicated that the fluorescent emission intensity of Tb(3+) ions would be enhanced in the complexes after terbium was doped with Gd(3+) ion. When x : y was 0.5 : 0.5, the fluorescent emission intensity was the largest. The result obtained by testing the X-ray diffraction of the monocrystal revealed that the molecular formula of the mono-crystal complex is [Tb(TPTZ)(H(2)O)(6)]Cl(3).3H(2)O. The number of metal ion coordinates is nine, and the tridentate TPTZ and six water molecules are bonded with terbium respectively. Besides, it also revealed that the monocrystal belongs to the monoclinic system, and space group Cc with the following unit cell parameters is a = 1.4785 (3) nm, b = 1.0547 (2) nm, c = 1.7385 (4) nm, beta = 94.42 (3) degrees, V = 2.7028 (9) nm(3) and Z = 4.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10895-010-0619-z | DOI Listing |
Curr Obes Rep
January 2025
Metabolism and Body Composition, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA.
Background: Recent technological advances have introduced novel methods for measuring body composition, each with unique benefits and limitations. The choice of method often depends on the trade-offs between accuracy, cost, participant burden, and the ability to measure specific body composition compartments.
Objective: To review the considerations of cost, accuracy, portability, and participant burden in reference and emerging body composition assessment methods, and to evaluate their clinical applicability.
J Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFJACC Heart Fail
January 2025
Institute for Clinical and Experimental Medicine (IKEM), Prague, Czech Republic. Electronic address:
Background: Growth differentiation factor (GDF)-15 is a pleiotropic cytokine that is associated with appetite-suppressing effects and weight loss in patients with malignancy.
Objectives: This study aims to investigate the relationships between GDF-15 levels, anorexia, cachexia, and clinical outcomes in patients with advanced heart failure with reduced ejection fraction (HFrEF).
Methods: In this observational, retrospective analysis, a total of 344 patients with advanced HFrEF (age 58 ± 10 years, 85% male, 67% NYHA functional class III), underwent clinical and echocardiographic examination, body composition evaluation by skinfolds and dual-energy x-ray absorptiometry, circulating metabolite assessment, Minnesota Living with Heart Failure Questionnaire, and right heart catheterization.
ACS Macro Lett
January 2025
Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
As a special kind of supramolecular compound with many favorable properties, pillar[]arene-based supramolecular polymer networks (SPNs) show potential application in many fields. Although we have come a long way using pillar[]arene to prepare SPNs and construct a series of smart materials, it remains a challenge to enhance the mechanical strength of pillar[]arene-based SPNs. To address this issue, a new supramolecular regulation strategy was developed, which could precisely control the preparation of pillar[]arene-based SPN materials with excellent mechanical properties by adjusting the polymer network structures.
View Article and Find Full Text PDFInorg Chem
January 2025
Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.
Improving catalytic performance by controlling the microstructure of materials has become a hot topic in the field of photocatalysis, such as the surface defect site, multistage layered morphology, and exposed crystal surface. Due to the differences in the metal atomic radius (Mn and Cd) and solubility product constant (MnS and CdS), Mn defect easily occurred in the S/MnCdS (S/0.4MCS) composite.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!