RADAR realistic animal model series for dose assessment.

J Nucl Med

Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.

Published: March 2010

Unlabelled: Rodent species are widely used in the testing and approval of new radiopharmaceuticals, necessitating murine phantom models. As more therapy applications are being tested in animal models, calculating accurate dose estimates for the animals themselves becomes important to explain and control potential radiation toxicity or treatment efficacy. Historically, stylized and mathematically based models have been used for establishing doses to small animals. Recently, a series of anatomically realistic human phantoms was developed using body models based on nonuniform rational B-spline. Realistic digital mouse whole-body (MOBY) and rat whole-body (ROBY) phantoms were developed on the basis of the same NURBS technology and were used in this study to facilitate dose calculations in various species of rodents.

Methods: Voxel-based versions of scaled MOBY and ROBY models were used with the Vanderbilt multinode computing network (Advanced Computing Center for Research and Education), using geometry and tracking radiation transport codes to calculate specific absorbed fractions (SAFs) with internal photon and electron sources. Photon and electron SAFs were then calculated for relevant organs in all models.

Results: The SAF results were compared with values from similar studies found in reference literature. Also, the SAFs were used with standardized decay data to develop dose factors to be used in radiation dose calculations. Representative plots were made of photon electron SAFs, evaluating the traditional assumption that all electron energy is absorbed in the source organs.

Conclusion: The organ masses in the MOBY and ROBY models are in reasonable agreement with models presented by other investigators noting that considerable variation can occur between reported masses. Results consistent with those found by other investigators show that absorbed fractions for electrons for organ self-irradiation were significantly less than 1.0 at energies above 0.5 MeV, as expected for many of these small-sized organs, and measurable cross-irradiation was observed for many organ pairs for high-energy electrons (as would be emitted by nuclides such as (32)P, (90)Y, or (188)Re).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2929767PMC
http://dx.doi.org/10.2967/jnumed.109.070532DOI Listing

Publication Analysis

Top Keywords

photon electron
12
phantoms developed
8
dose calculations
8
moby roby
8
roby models
8
absorbed fractions
8
electron safs
8
models
7
dose
5
radar realistic
4

Similar Publications

We report the radiation-induced darkening (RD) effect caused by X-ray radiation and the bleaching effect caused by D/H/N loading in self-developed Yb-doped large mode-area photonic crystal fibers (LMA PCFs). The decrease in the slope efficiency caused by irradiation decays exponentially with an increase in the X-ray radiation doses, and the radiation-induced gain variation (RIGV) showed a linear decay trend with increasing irradiation doses. The slope efficiency of Yb-doped LMA PCF, which significantly degraded from 71.

View Article and Find Full Text PDF

Optical properties of InGaN/GaN red quantum well(QW) and their microcavities were studied and compared under optical pumping. Incidence of the excitation laser from the p-side was employed for both structures in order to acquire better emission characteristics. The QW structure was grown on sapphire substrate by metalorganic vapor-phase epitaxy(MOVPE) with a blue pre-layer QW.

View Article and Find Full Text PDF

We theoretically study high-order harmonic generation (HHG) involving an extreme ultraviolet (XUV) pulse and an intense infrared driving field, where the electron is ionized by absorbing a single XUV photon. Using a developed classical-trajectory model that includes Coulomb effects and the improved initial conditions, it is demonstrated that the resulting harmonic emission times match well with those obtained by applying the Gabor transform to data from numerical solutions of time-dependent Schrödinger equations for helium and hydrogen atoms. This confirms a classical HHG scheme under single-photon ionization: The electron, ionized by absorbing one XUV photon, oscillates in the infrared field and may recollide with the parent ion, emitting high-frequency radiation.

View Article and Find Full Text PDF

Spatial anti-bunching, in contrast to the well-known bunching behavior observed in classical light sources, describes a situation where photons tend to avoid each other in space, resulting in a reduced probability of detecting two or more photons in proximity. This anti-bunching effect, a hallmark of nonclassical light, signifies a deviation from classical intensity fluctuations and has been observed not only in free electrons and entangled photon pairs but also in chaotic-thermal light. This work investigates the generation mechanism of spatial anti-bunching correlation in random light fields, leveraging the wandering of light centers to induce a second-order coherence degree below unity.

View Article and Find Full Text PDF

Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!