Ascidians: an invertebrate chordate model to study Alzheimer's disease pathogenesis.

Dis Model Mech

Center for Applied and Experimental Genomics, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-4614, USA.

Published: September 2010

Here we present the ascidian Ciona intestinalis as an alternative invertebrate system to study Alzheimer's disease (AD) pathogenesis. Through the use of AD animal models, researchers often attempt to reproduce various aspects of the disease, particularly the coordinated processing of the amyloid precursor protein (APP) by alpha-, beta- and gamma-secretases to generate amyloid beta (Abeta)-containing plaques. Recently, Drosophila and C. elegans AD models have been developed, exploiting the relative simplicity of these invertebrate systems, but they lack a functional Abeta sequence and a beta-secretase ortholog, thus complicating efforts to examine APP processing in vivo. We propose that the ascidian is a more appropriate invertebrate AD model owing to their phylogenetic relationship with humans. This is supported by bioinformatic analyses, which indicate that the ascidian genome contains orthologs of all AD-relevant genes. We report that transgenic ascidian larvae can properly process human APP(695) to generate Abeta peptides. Furthermore, Abeta can rapidly aggregate to form amyloid-like plaques, and plaque deposition is significantly increased in larvae expressing a human APP(695) variant associated with familial Alzheimer's disease. We also demonstrate that nervous system-specific Abeta expression alters normal larval behavior during attachment. Importantly, plaque formation and alterations in behavior are not only observed within 24 hours post-fertilization, but anti-amyloid drug treatment improves these AD-like pathologies. This ascidian model for AD provides a powerful and rapid system to study APP processing, Abeta plaque formation and behavioral alterations, and could aid in identifying factors that modulate amyloid deposition and the associated disruption of normal cellular function and behaviors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4068634PMC
http://dx.doi.org/10.1242/dmm.003434DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
study alzheimer's
8
disease pathogenesis
8
system study
8
app processing
8
human app695
8
plaque formation
8
ascidian
5
abeta
5
ascidians invertebrate
4

Similar Publications

Validating the Accuracy of Parkinson's Disease Clinical Diagnosis: A UK Brain Bank Case-Control Study.

Ann Neurol

January 2025

Research Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy.

Objective: Despite diagnostic criteria refinements, Parkinson's disease (PD) clinical diagnosis still suffers from a not satisfying accuracy, with the post-mortem examination as the gold standard for diagnosis. Seminal clinicopathological series highlighted that a relevant number of patients alive-diagnosed with idiopathic PD have an alternative post-mortem diagnosis. We evaluated the diagnostic accuracy of PD comparing the in-vivo clinical diagnosis with the post-mortem diagnosis performed through the pathological examination in 2 groups.

View Article and Find Full Text PDF

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

AI-powered FDG-PET radiomics: a door to better Alzheimer's disease classification?

Eur Radiol

January 2025

Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.

View Article and Find Full Text PDF

Background: Multiple Sulfatase Deficiency (MSD) is a rare inherited lysosomal storage disorder characterized by loss of function mutations in the SUMF1 gene that manifests as a severe pediatric neurological disease. There are no available targeted therapies for MSD.

Methods: We engineered a viral vector (AAV9/SUMF1) to deliver working copies of the SUMF1 gene and tested the vector in Sumf1 knock out mice that generally display a median lifespan of 10 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!