A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Scopolamine treatment and muscarinic receptor subtype-3 gene ablation augment azoxymethane-induced murine liver injury. | LitMetric

Previous work suggests that vagus nerve disruption reduces hepatocyte and oval cell expansion after liver injury. The role of postneuronal receptor activation in response to liver injury has not been ascertained. We investigated the actions of scopolamine, a nonselective muscarinic receptor antagonist, and specific genetic ablation of a key cholinergic receptor, muscarinic subtype-3 (Chrm3), on azoxymethane (AOM)-induced liver injury in mice. Animal weights and survival were measured as was liver injury using both gross and microscopic examination. To assess hepatocyte proliferation and apoptosis, ductular hyperplasia, and oval cell expansion, we used morphometric analysis of 5-bromo-2'-deoxyuridine-, activated caspase-3-, hematoxylin and eosin-, cytokeratin-19-, and epithelial cell adhesion molecule-stained liver sections. Sirius red staining was used as a measure of collagen deposition and its association with oval cell reaction. In AOM-treated mice, both muscarinic receptor blockade with scopolamine and Chrm3 ablation attenuated hepatocyte proliferation and augmented gross liver nodularity, apoptosis, and fibrosis. Compared with control, scopolamine-treated and Chrm3(-/-) AOM-treated mice had augmented oval cell reaction with increased ductular hyperplasia and oval cell expansion. Oval cell reaction correlated robustly with liver fibrosis. No liver injury was observed in scopolamine-treated and Chrm3(-/-) mice that were not treated with AOM. Only AOM-treated Chrm3(-/-) mice developed ascites and had reduced survival compared with AOM-treated wild-type controls. In AOM-induced liver injury, inhibiting postneuronal cholinergic muscarinic receptor activation with either scopolamine treatment or Chrm3 gene ablation results in prominent oval cell reaction. We conclude that Chrm3 plays a critical role in the liver injury response by modulating hepatocyte proliferation and apoptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2879938PMC
http://dx.doi.org/10.1124/jpet.109.165118DOI Listing

Publication Analysis

Top Keywords

liver injury
32
oval cell
28
muscarinic receptor
16
cell reaction
16
cell expansion
12
hepatocyte proliferation
12
liver
11
scopolamine treatment
8
gene ablation
8
injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!