Transcription within condensed chromatin: Steric hindrance facilitates elongation.

Biophys J

Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France.

Published: March 2010

During eukaryotic transcription, RNA-polymerase activity generates torsional stress in DNA, having a negative impact on the elongation process. Using our previous studies of chromatin fiber structure and conformational transitions, we suggest that this torsional stress can be alleviated, thanks to a tradeoff between the fiber twist and nucleosome conformational transitions into an activated state named "reversome". Our model enlightens the origin of polymerase pauses, and leads to the counterintuitive conclusion that chromatin-organized compaction might facilitate polymerase progression. Indeed, in a compact and well-structured chromatin loop, steric hindrance between nucleosomes enforces sequential transitions, thus ensuring that the polymerase always meets a permissive nucleosomal state.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830436PMC
http://dx.doi.org/10.1016/j.bpj.2009.10.054DOI Listing

Publication Analysis

Top Keywords

steric hindrance
8
torsional stress
8
conformational transitions
8
transcription condensed
4
condensed chromatin
4
chromatin steric
4
hindrance facilitates
4
facilitates elongation
4
elongation eukaryotic
4
eukaryotic transcription
4

Similar Publications

Collagen Alpha 1(XI) Amino-Terminal Domain Modulates Type I Collagen Fibril Assembly.

Biochemistry

January 2025

Biomolecular Research Institute, Boise State University, 1910 University Drive, Boise, Idaho 83725, United States.

The amino-terminal domain of collagen α1(XI) plays a key role in controlling fibrillogenesis. However, the specific mechanisms through which various isoforms of collagen α1(XI) regulate this process are not fully understood. We measured the kinetics of collagen type I self-assembly in the presence of specific collagen α1(XI) isoforms.

View Article and Find Full Text PDF

Nanoscale Manipulation of Single-Molecule Conformational Transition through Vibrational Excitation.

J Am Chem Soc

January 2025

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0309, United States.

Controlling molecular actions on demand is a critical step toward developing single-molecule functional devices. Such control can be achieved by manipulating the interactions between individual molecules and their nanoscale environment. In this study, we demonstrate the conformational transition of a single pyrrolidine molecule adsorbed on a Cu(100) surface, driven by vibrational excitation through tunneling electrons using scanning tunneling microscopy.

View Article and Find Full Text PDF

Most current highly efficient organic solar cells utilize small molecules like Y6 and its derivatives as electron acceptors in the photoactive layer. In this work, a small molecule acceptor, SC8-IT4F, is developed through outer side chain engineering on the terminal thiophene of a conjugated 6,12-dihydro-dithienoindeno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (IDTT) central core. Compared to the reference molecule C8-IT4F, which lacks outer side chains, SC8-IT4F displays notable differences in molecule geometry (as shown by simulations), thermal behavior, single-crystal packing, and film morphology.

View Article and Find Full Text PDF

(6,5)-enriched single-walled carbon nanotubes (SWCNTs) were reductively arylated using sodium naphthalenide and monosubstituted and disubstituted iodobenzene derivatives to control their photoluminescence (PL) properties. In the reactions with substituted iodobenzenes, the degree of functionalization was influenced by the substituents on the aryl groups depending on their position, which allowed us to realize control of the PL intensity. The substituents at the 2-position and methyl groups at the 3,5-positions of the phenyl group respectively increased the E11** PL and E11* PL selectivity at ~1230 and ~1100 nm.

View Article and Find Full Text PDF

Integrins are a large family of heterodimeric receptors important for cell adhesion and signaling. Integrin α5β1, also known as the fibronectin receptor, is a key mediator of angiogenesis and its dysregulation is associated with tumor proliferation, progression, and metastasis. Despite numerous efforts, α5β1-targeting therapeutics have been unsuccessful in large part due to efficacy and off-target effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!