Phospholipase and esterase production by clinical strains of Fonsecaea pedrosoi and their interactions with epithelial cells.

Mycopathologia

Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.

Published: July 2010

Fonsecaea pedrosoi is the major etiologic agent of chromoblastomycosis. The virulence of F. pedrosoi is a meagerly explored phenomenon. The ability to interact with host cells and the production of hydrolytic enzymes are thought to be important virulence mechanisms of fungal pathogens. Here, we measured the production of two distinct lipolytic enzymes, phospholipase and esterase, by three clinical strains of F. pedrosoi isolated from chromoblastomycosis lesions, as well as their capabilities to interact with epithelial cells. All the strains were excellent esterase producers, generating elevated hydrolytic halos after 5 days of growth. Conversely, phospholipase activity was detected only after 10 days, except for the most recent strain of F. pedrosoi (Magé) in which measurable phospholipase activity was detected on day 5. The ability to interact with epithelial cells was also investigated. Regarding the adhesion capability, an indirect connection was observed in relation to the adaptation time of each strain in axenic culture, in which Magé strain showed the best adhesion ability followed by LDI 11428 and 5VPL strains. Both 5VPL and Magé strains were also detected inside the epithelial cells, while the LDI 11428 strain was rarely detected in cytoplasmatic vacuolar compartments. Moreover, these F. pedrosoi strains were able to cause injury in epithelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11046-010-9293-6DOI Listing

Publication Analysis

Top Keywords

epithelial cells
20
phospholipase esterase
8
clinical strains
8
fonsecaea pedrosoi
8
ability interact
8
interact epithelial
8
phospholipase activity
8
activity detected
8
ldi 11428
8
strains
6

Similar Publications

Annual epidemics of influenza result in 3-5 million cases of severe illness and more than 600 000 deaths. Severe forms of influenza are usually characterized by vascular endothelial cells damage. Thus, influenza A viruses, including subtypes A(H1N1)pdm09, A(H3N2), as well as highly pathogenic avian influenza viruses, can infect the vascular endothelium, leading to activation and subsequent dysfunction of these cells.

View Article and Find Full Text PDF

Human lens epithelial cells (hLECs) are critical for lens transparency, and their aberrant metabolic activity and gene expression can lead to cataract. Intracellular delivery to hLECs, especially to sub-cellular organelles (e.g.

View Article and Find Full Text PDF

Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.

View Article and Find Full Text PDF

N-Glycosylation modulators for targeted manipulation of glycosylation for monoclonal antibodies.

Appl Microbiol Biotechnol

January 2025

School of Interdisciplinary Research, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.

Monoclonal antibodies are extensively used as biotherapeutics for treatment of a variety of diseases. Glycosylation of therapeutic antibodies is considered a critical quality attribute as it influences the effector function, circulatory half-life, immunogenicity, and eventually efficacy and patient safety. During upstream process development, media components play a significant role in determining the glycosylation profile.

View Article and Find Full Text PDF

A refined method for high-purity isolation of uterine glandular epithelial cells in mouse.

J Biochem

January 2025

Department of Comparative and Experimental Medicine, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan.

The uterine endometrium consists of luminal epithelium, glandular epithelium, and stromal cells, with uterine glands playing a pivotal role in pregnancy success among mammals. Uterine glands secrete essential factors that regulate embryo development and implantation; however, their cellular biology remains poorly understood. This study presents a refined method for isolating three distinct endometrial cell types with high purity, with a specific emphasis on glandular epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!