Acyl-coenzyme A: diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes triglyceride synthesis in the glycerol phosphate pathway. It has relations with the excess supply and accumulation of triglycerides. Therefore, DGAT inhibitors may act as a potential therapy for obesity and type 2 diabetes. Five flavonoids were isolated from the ethanol extracts of licorice roots, using an in vitro DGAT inhibitory assay. One isoprenyl flavonoid showed most potential inhibition of DGAT on five flavonoids (1-5). On the basis of spectral evidences, the compound was identified as glabrol (5). Compound 5 inhibited rat liver microsomal DGAT activity with an IC50 value of 8.0 microM, but the IC50 value for four flavonoids (1-4) was more than 100 microM. In addition, glabrol showed a noncompetitive type of inhibition against DGAT. These data suggest that potential therapy for the treatment in obesity and type 2 diabetes patients by licorice roots might be related with its DGAT inhibitory effect.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-010-0208-3DOI Listing

Publication Analysis

Top Keywords

diacylglycerol acyltransferase
8
potential therapy
8
obesity type
8
type diabetes
8
licorice roots
8
dgat inhibitory
8
inhibition dgat
8
dgat
7
inhibitory activity
4
activity diacylglycerol
4

Similar Publications

Lipid droplet formation induced by icaritin derivative IC2 promotes a combination strategy for cancer therapy.

Chin Med

December 2024

MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, China.

Background: Lipid metabolism is crucial in cancer progression. Lipid droplets (LDs) generated in cancer cells can act as protective mechanisms through alleviating lipotoxicity under stress conditions. We previously developed IC2 from the Chinese medicine icaritin as an inhibitor of stearoyl-CoA desaturase 1 (SCD1).

View Article and Find Full Text PDF

The many faces of DGAT1.

Life Sci

February 2025

Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland; Laboratory of Stem Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Cracow, Poland. Electronic address:

Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a multifaced enzyme with a wide spectrum of substrates, from lipids through waxes to retinoids, which makes it an interesting therapeutic target. DGAT1 inhibitors are currently at various stages of preclinical and clinical trials, mostly related to metabolic diseases. Interestingly, in recent years, a growing amount of research has shown the influence of DGAT1 on immune cell metabolism and functions, highlighting its important role during infections and tumorigenesis.

View Article and Find Full Text PDF

Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism.

Redox Biol

February 2025

Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany. Electronic address:

Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time <2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18).

View Article and Find Full Text PDF

Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!