Background: When a physician-directed antibiotic-loaded polymethylmethacrylate (PMMA) bone cement (ALBC) formulation is used in total hip arthroplasties (THAs) and total knee arthroplasties (TKAs), current practice in the United States involves arbitrary choice of the antibiotic loading (herein defined as the ratio of the mass of the antibiotic added to the mass of the cement powder). We suggest there is a need to develop a rational method for determining this loading.

Questions/purposes: We propose a new method for determining the antibiotic loading to use when preparing a physician-directed ALBC formulation and illustrate this method using three in vitro properties of an ALBC in which the antibiotic was daptomycin.

Materials And Methods: Daptomycin was blended with the powder of the cement using a mechanical mixer. We performed fatigue, elution, and activity tests on three sets of specimens having daptomycin loadings of 2.25, 4.50, and 11.00 wt/wt%. Correlational analyses of the results of these tests were used in conjunction with stated constraints and a nonlinear optimization method to determine the daptomycin loading to use.

Results: With an increase in daptomycin loading, the estimated mean fatigue limit of the cement decreased, the estimated elution rate of the antibiotic increased, and the percentage inhibition of staphylococcal growth by the eluate remained unchanged at 100%. For a daptomycin-loaded PMMA bone cement we computed the optimum amount of daptomycin to mechanically blend with 40 g of cement powder is 1.36 g.

Conclusions: We suggest an approach that may be used to determine the amount of antibiotic to blend with the powder of a PMMA bone cement when preparing a physician-directed ALBC formulation, and highlighted the attractions and limitations of this approach.

Clinical Relevance: When a physician-directed ALBC formulation is selected for use in a TKA or THA, the approach we detail may be employed to determine the antibiotic loading to use rather than the empirical approach that is taken in current clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895843PMC
http://dx.doi.org/10.1007/s11999-010-1281-0DOI Listing

Publication Analysis

Top Keywords

antibiotic loading
16
pmma bone
16
bone cement
16
albc formulation
16
physician-directed albc
12
antibiotic
8
determining antibiotic
8
physician-directed antibiotic-loaded
8
cement
8
cement powder
8

Similar Publications

MXene-based composite photocatalysts for efficient degradation of antibiotics in wastewater.

Sci Rep

December 2024

Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.

MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.

View Article and Find Full Text PDF

This paper introduces an evidence-based, design-of-experiments (DoE) approach to analyze and optimize drug delivery systems, ensuring that release aligns with the therapeutic window of the medication. First, the effective factors and release data of the system are extracted from the literature and meta-analytically undergo regression modeling. Then, the interaction and correlation of the factors to each other and the release amount are quantitatively assessed.

View Article and Find Full Text PDF

Preparation and characterization of cellulose nanocrystal coated with silver nanoparticles with antimicrobial activity by enzyme method.

Int J Biol Macromol

December 2024

Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang, China. Electronic address:

Silver nanoparticles (AgNPs) exhibit broad-spectrum antibacterial activity and serve as effective antimicrobial agents against antibiotic-resistant bacteria. In this study, agricultural waste corn straw was used as the raw material to obtain cellulose nanocrystal (CNC) through enzymatic hydrolysis. The hydrolysate was employed as reducing agents to synthesize CNC-AgNPs.

View Article and Find Full Text PDF

Safety of baricitinib in vaccinated patients with severe and critical COVID-19 sub study of the randomised Bari-SolidAct trial.

EBioMedicine

December 2024

Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway; Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway. Electronic address:

Background: The Bari-SolidAct randomized controlled trial compared baricitinib with placebo in patients with severe COVID-19. A post hoc analysis revealed a higher incidence of serious adverse events (SAEs) among SARS-CoV-2-vaccinated participants who had received baricitinib. This sub-study aimed to investigate whether vaccination influences the safety profile of baricitinib in patients with severe COVID-19.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!