Phosphoinositide 3-kinase gamma is a multifunctional enzyme with lipid and protein kinase activities that also acts as a scaffold protein in many diverse signalling processes. The enzyme contains five different domains, but their individual contributions to membrane binding are not fully understood. Here, using in vitro liposome binding assays of individual domains and deletion constructs of human phosphoinositide 3-kinase gamma, we show that each domain is capable of binding anionic phospholipids to varying degrees, depending on the charge of the anionic substrate. Moreover, with the exception of the C2-domain, deletion of any single protein domain results in a complete loss of kinase activity toward both lipids and proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-010-9232-x | DOI Listing |
J Exp Med
March 2025
Institute of Cancer Research, Shenzhen Bay Laboratory , Shenzhen, China.
BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.
View Article and Find Full Text PDFAnim Cells Syst (Seoul)
January 2025
Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.
Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong, People's Republic of China.
Background: Dachaihu decoction (DCHD) is a common Chinese medicine formula against sepsis-induced acute lung injury (SALI). PANoptosis is a novel type of programmed cell death. Nevertheless, The mechanisms of DCHD against SALI via anti-PANoptosis remains unknown.
View Article and Find Full Text PDFBiomedica
December 2024
Universidad del Valle, Cali, ColombiaDepartamento de Microbiología, Facultad de Salud, Universidad del Valle, Cali, Colombia; Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disorders, National Institutes of Health, Bethesda, MD, USA.
Activated phosphoinositide 3-kinase δ syndrome is an inborn error of immunity due to mutations within the genes responsible for encoding PI3Kδ subunits. This syndrome results in an excessive activation of the phosphoinositide 3-kinase signaling pathway. Gainof-function mutations in the gene PIK3R1 (encoding p85α, p55α, and p50α) lead to the development of the activated PI3K δ syndrome.
View Article and Find Full Text PDFElife
January 2025
The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, United Kingdom.
encodes three regulatory subunits of class IA phosphoinositide 3-kinase (PI3K), each associating with any of three catalytic subunits, namely p110α, p110β, or p110δ. Constitutional mutations cause diseases with a genotype-phenotype relationship not yet fully explained: heterozygous loss-of-function mutations cause SHORT syndrome, featuring insulin resistance and short stature attributed to reduced p110α function, while heterozygous activating mutations cause immunodeficiency, attributed to p110δ activation and known as APDS2. Surprisingly, APDS2 patients do not show features of p110α hyperactivation, but do commonly have SHORT syndrome-like features, suggesting p110α hypofunction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!