Rationale: Combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) can be used to study anticonvulsant drugs. A previous study showed that lamotrigine (LTG) inhibited brain activation induced when TMS was applied over motor cortex, whereas it increased activation induced by TMS applied over prefrontal cortex.

Objectives: The present double-blind, placebo-controlled, crossover study in 30 healthy subjects again combined TMS and fMRI to test whether the effects seen previously with LTG would be confirmed and to compare these with a second anticonvulsant drug, valproic acid (VPA).

Results: Statistical parametric mapping analysis showed that both LTG and VPA, compared to placebo, inhibited TMS-induced activation of the motor cortex. In contrast, when TMS was applied over prefrontal cortex, LTG increased the activation of limbic regions, confirming previous results; VPA had no effect.

Conclusion: We conclude that LTG and VPA have similar inhibitory effects on motor circuits, but differing effects on the prefrontal corticolimbic system. The study demonstrates that a combination of TMS and fMRI techniques may be useful in the study of the effects of neuroactive drugs on specific brain circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00213-010-1786-yDOI Listing

Publication Analysis

Top Keywords

tms applied
12
transcranial magnetic
8
magnetic stimulation
8
valproic acid
8
activation induced
8
induced tms
8
motor cortex
8
increased activation
8
applied prefrontal
8
tms fmri
8

Similar Publications

SMTP-44D alleviates diabetic retinopathy by suppressing inflammation and oxidative stress in in vivo and in vitro models.

J Pharmacol Sci

February 2025

Department of Pharmacology, Showa University Graduate School of Pharmacy, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan; Pharmacological Research Center, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan.

Diabetic retinopathy (DR) is the leading cause of blindness among working-age adults, and inflammation and oxidative stress contribute to DR development. However, no effective treatments are currently approved for DR. Therefore, this study aimed to investigate the effects of SMTP-44D-a Stachybotrys microspora-derived compound with anti-inflammatory and antioxidant properties-on DR in in vivo and in vitro models.

View Article and Find Full Text PDF

Objective: Traditional medicine (TM) has played a key role in the health care system of East Asian countries, including China, Japan and South Korea. This bibliometric study analyzes the recent research status of these three TMs, including traditional Chinese medicine (TCM), traditional Korean medicine (TKM), and Kampo medicine (KM).

Methods: Research topics of studies published for recent 10 years (2014 to 2023), through a search on MEDLINE via PubMed, was analyzed.

View Article and Find Full Text PDF

Repetitive TMS (rTMS) is a powerful neuroscientific tool with the potential to noninvasively identify brain-behavior relationships in humans. Early work suggested that certain rTMS protocols (e.g.

View Article and Find Full Text PDF

Background: Selective attention is a fundamental cognitive mechanism that allows people to prioritise task-relevant information while ignoring irrelevant information. Previous research has suggested key roles of parietal event-related potentials (ERPs) and alpha oscillatory responses in attention tasks. However, the informational content of these signals is less clear, and their causal effects on the coding of multiple task elements are yet unresolved.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with epoxide hydrolase activity in the C-terminal domain (C-EH) and lipid phosphate phosphatase activity in the N-terminal domain (N-phos). The C-EH hydrolyzes bioactive epoxy fatty acids such as epoxyeicosatrienoic acid (EET). The N-phos hydrolyzes lipid phosphomonesters, including the signaling molecules of lysophosphatidic acid (LPA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!