Differentiation, distribution and immune regulation of human IL-22-producing T cells in infections remain unknown. Here, we demonstrated in a nonhuman primate model that M. tuberculosis infection resulted in apparent increases in numbers of T cells capable of producing IL-22 de novo without in vitro Ag stimulation, and drove distribution of these cells more dramatically in lungs than in blood and lymphoid tissues. Consistently, IL-22-producing T cells were visualized in situ in lung tuberculosis (TB) granulomas by confocal microscopy and immunohistochemistry, indicating that mature IL-22-producing T cells were present in TB granuloma. Surprisingly, phosphoantigen HMBPP activation of Vgamma2Vdelta2 T cells down-regulated the capability of T cells to produce IL-22 de novo in lymphocytes from blood, lung/BAL fluid, spleen and lymph node. Up-regulation of IFNgamma-producing Vgamma2Vdelta2 T effector cells after HMBPP stimulation coincided with the down-regulated capacity of these T cells to produce IL-22 de novo. Importantly, anti-IFNgamma neutralizing Ab treatment reversed the HMBPP-mediated down-regulation effect on IL-22-producing T cells, suggesting that Vgamma2Vdelta2 T-cell-driven IFNgamma-networking function was the mechanism underlying the HMBPP-mediated down-regulation of the capability of T cells to produce IL-22. These novel findings raise the possibility to ultimately investigate the function of IL-22 producing T cells and to target Vgamma2Vdelta2 T cells for balancing potentially hyper-activating IL-22-producing T cells in severe TB.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2829073 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1000789 | DOI Listing |
Int J Biol Macromol
February 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou, Guangdong 510642, China. Electronic address:
Type 3 Innate lymphoid cells (ILC3s) functions bear complex response during Inflammatory bowel diseases (IBD). Here, our study first analyzed the main pharmacological components in Shen Ling Bai Zhu San n-butanol extracts (S-Nb), and then explored whether S-Nb administrated immune response of ILC3s, and how it regulates ILC3s. Shen Ling Bai Zhu San (SLBZS) or S-Nb were administrated for 7 days to analyze the frequency of ILC3s and their produced cytokine.
View Article and Find Full Text PDFAllergy
November 2024
Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, California, USA.
Leukemia
November 2024
Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, 11030, USA.
Gut Microbes
September 2024
Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Front Immunol
September 2024
Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, United States.
Introduction: Colitis is an inflammatory bowel disease (IBD) characterized by immune cell dysregulation and alterations in the gut microbiome. In our previous report, we showed a natural product in cruciferous vegetables and ligand of the aryl hydrocarbon receptor (AhR), indole-3-carbinol (I3C), was able to reduce colitis-induced disease severity and microbial dysbiosis in an interleukin-22 (IL-22) dependent manner.
Methods: In the current study, we performed single-cell RNA sequencing (scRNAseq) from colonocytes during colitis induction and supplementation with I3C and show how this treatment alters expression of genes involved in IL-22 signaling.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!