In situ 24 kHz coherent imaging of morphology change in laser percussion drilling.

Opt Lett

Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Canada K7L 3N6.

Published: March 2010

We observe sample morphology changes in real time (24 kHz) during and between percussion drilling pulses by integrating a low-coherence microscope into a laser micromachining platform. Nonuniform cut speed and sidewall evolution in stainless steel are observed to strongly depend on assist gas. Interpulse morphology relaxation such as hole refill is directly imaged, showing dramatic differences in the material removal process dependent on pulse duration/peak power (micros/0.1 kW, ps/20 MW) and material (steel, lead zirconate titanate PZT). Blind hole depth precision is improved by over 1 order of magnitude using in situ feedback from the imaging system.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OL.35.000646DOI Listing

Publication Analysis

Top Keywords

percussion drilling
8
situ khz
4
khz coherent
4
coherent imaging
4
imaging morphology
4
morphology change
4
change laser
4
laser percussion
4
drilling observe
4
observe sample
4

Similar Publications

Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Multiple injury models have been developed to study this neurological disorder. One such model is the lateral fluid percussion injury (LFPI) rodent model.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is the leading cause of morbidity and mortality worldwide. Multiple injury models have been developed to study this neurological disorder. One such model is the lateral fluid-percussion injury (LFPI) rodent model.

View Article and Find Full Text PDF

Various contents of carbon fibers (CFs) and potassium titanate whiskers (PTWs) were added to an Fe-based impregnated diamond bit (IDB) matrix to enhance its adaptability to percussive-rotary drilling. A series of mechanical tests were conducted successively to find the effects of the reinforcing materials on the properties of the Fe-based IDB samples. Then, the fracture surfaces of the samples were analyzed via scanning electron microscopy (SEM) and energy-dispersive spectroscopy, and the worn surfaces and abrasive debris of the samples were analyzed using a laser scanning confocal microscope and SEM.

View Article and Find Full Text PDF

In this contribution, we present novel results on top-down drilling in silicon, the most important semiconductor material, focusing specifically on the influence of the laser parameters. We compare the holes obtained with repetitive single pulses, as well as in different MHz- and GHz-burst regimes. The deepest holes were obtained in GHz-burst mode, where we achieved holes of almost 1 mm depth and 35 µm diameter, which corresponds to an aspect ratio of 27, which is higher than the ones reported so far in the literature, to the best of our knowledge.

View Article and Find Full Text PDF

Materials processing with ultrashort laser pulses is one of the most important approaches when it comes to machining with very high accuracy. High pulse repetition rates and high average laser power can be used to attain high productivity. By tightly focusing the laser beam, the irradiances on the workpiece can exceed 10 W/cm, and thus cause usually unwanted X-ray emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!