High-resolution color-coded sonography in angiolymphoid hyperplasia with eosinophilia presenting as temporal arteritis.

Circulation

Department of Neurology, Regensburg University Medical Center, Bezirksklinikum Regensburg, Universitaetsstr.84, 93053 Regensburg, Germany.

Published: March 2010

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIR.0b013e3181d38e01DOI Listing

Publication Analysis

Top Keywords

high-resolution color-coded
4
color-coded sonography
4
sonography angiolymphoid
4
angiolymphoid hyperplasia
4
hyperplasia eosinophilia
4
eosinophilia presenting
4
presenting temporal
4
temporal arteritis
4
high-resolution
1
sonography
1

Similar Publications

Rapid Acquisition of High-Pixel Fluorescence Lifetime Images of Living Cells via Image Reconstruction Based on Edge-Preserving Interpolation.

Biosensors (Basel)

January 2025

State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Fluorescence lifetime imaging (FLIM) has established itself as a pivotal tool for investigating biological processes within living cells. However, the extensive imaging duration necessary to accumulate sufficient photons for accurate fluorescence lifetime calculations poses a significant obstacle to achieving high-resolution monitoring of cellular dynamics. In this study, we introduce an image reconstruction method based on the edge-preserving interpolation method (EPIM), which transforms rapidly acquired low-resolution FLIM data into high-pixel images, thereby eliminating the need for extended acquisition times.

View Article and Find Full Text PDF

In the Drosophila brain, neuronal diversity originates from approximately 100 neural stem cells, each dividing asymmetrically. Precise mapping of cell lineages at the single-cell resolution is crucial for understanding the mechanisms that direct neuronal specification. However, existing methods for high-resolution lineage tracing are notably time-consuming and labor-intensive.

View Article and Find Full Text PDF

Bullet characterization using Photon-Counting detector CT: A phantom study with intact bullets.

Eur J Radiol

December 2024

Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, PO Box 5800, 6202 AZ Maastricht, the Netherlands; Mental Health and Sciences (MHeNs) Research Institute, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.

Objectives: Photon-counting detector CT (PCD-CT) is expected to substantially improve and expand CT-imaging applicability due to its intrinsic spectral capabilities, increased spatial resolution, reduced electronic noise, and improved image contrast. The current study aim is to evaluate PCD-CT efficacy in characterizing bullets based on their dimensions, shape, and material composition.

Materials And Methods: This is an observational phantom study examining 11 unfired, intact bullets of various common calibers, placed in ballistic gelatin.

View Article and Find Full Text PDF

Cholera, an acute waterborne diarrheal disease, remains a major global health challenge. Despite being curable and preventable, it can be fatal if left untreated, especially for children. Bangladesh, a cholera-endemic country with a high disease burden, experiences two peaks annually, during the dry pre-monsoon spring and the wet post-monsoon fall seasons.

View Article and Find Full Text PDF

Aggregation-induced color-coded imaging for HOCl detection in living cells with dark-field microscopy.

Talanta

February 2025

State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China. Electronic address:

In this work, we develop a nanoprobe for the detection of hypochlorous acid (HOCl), a key reactive oxygen species, utilizing dark-field microscopy (DFM). The nanoprobe is constructed by covalently attaching PEG-SH and an HOCl-sensitive molecule, FD, to gold nanoparticles (GNPs-FD-PEG). This probe detects HOCl by observing a color shift from green to red due to the aggregation of GNPs, which is triggered by HOCl-induced the cleavage of FD molecule.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!