We generated all possible haploid and homozygous diploid genotypes at 6 biosynthetic loci in yeast and scored their fitness to examine whether there was any pattern of weak synergistic epistasis, which is a requirement of the deterministic mutation model for the evolution of sex. We measured 4 components of fitness: haploid growth rate, haploid mating efficiency, diploid growth rate, and diploid sporulation efficiency. We found that in agreement with previous work in yeast, epistasis tended to be small in magnitude and variable in sign, regardless of the fitness component measured. The number of background mutations had either no effect or no consistent effect on epistasis distributions. For every combination of 2 loci in a mutation-free background, we also generated all heterozygous genotypes so that we could partition diploid epistasis into additive x additive, additive x dominance, and dominance x dominance epistasis. Our main interest was in determining whether dominance by dominance epistasis was large and negative, which is a requirement of diploid models with inbreeding to explain high levels of recombination. Dominance by dominance epistasis estimates obtained by partitioning diploid epistasis for growth rates were both positive and negative. With the caveat that our results are based on only 6 biosynthetic loci, epistasis for fitness is not supported as an explanation for the maintenance of sex or the high rate of meiotic recombination in yeast.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jhered/esq007 | DOI Listing |
Am J Speech Lang Pathol
January 2025
Department of Speech and Hearing Sciences, University of Washington, Seattle.
Purpose: Despite recent advances, gender inequality remains a major concern within the workforce. One manifestation of gender inequality in academia is the undercitation of women-authored compared to men-authored papers that is thought to reflect implicit biases and has important implications for the academic advancement for research-intensive female faculty. These studies largely stem from male-dominant professions.
View Article and Find Full Text PDFPLoS One
January 2025
Real Estate Research Center, Nanjing Agricultural University, Nanjing, China.
This paper aims to reveal the changing characteristics of the contribution rates of different production factors in China since the reform and opening up from two dimensions: stage and space. The study used national data from 1978 to 2021 and provincial data from 2000 to 2020, combined with methods such as C-D production function and spatial econometrics for analysis. Research has found that: (1) In terms of stage characteristics, during the structural adjustment stage (1978-1998), economic growth mainly relies on capital and labor input, and the contribution rate of land factors gradually decreases.
View Article and Find Full Text PDFEnviron Manage
January 2025
Department of Engineering, Reykjavik University, Reykjavík, Iceland.
This research assesses heavy metal contamination within the riparian zone of the Danro River, a tributary of the Ganges River basin in India, particularly impacted by sand mining activities. The study conducted analyses on major and trace elements in soil samples, focusing on those identified as ecologically hazardous by the Water Framework Directive of India. Utilizing a combination of indices (Enrichment Factor, Pollution Load Index, and Index of geo-accumulation) and statistical techniques such as Principal Component Analysis (PCA), the investigation aimed to evaluate contamination severity, ecological risks, and pollution sources.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Ecology and Genetics Research Unit, PO Box 3000, University of Oulu, FI-90014 Oulu, Finland.
The physical and chemical properties of wild berry fruits change dramatically during development, and the ripe berries host species-specific endophytic communities. However, the development of fungal endophytic communities during berry ripening is unknown. We studied bilberries (Vaccinium myrtillus L.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Parsons Laboratory, 15 Vassar Street, Cambridge, Massachusetts 02139, USA.
The high salinity and organic content in oil and gas wastewaters can cause ion suppression during liquid chromatography mass spectrometry (LC/MS) analysis, diminishing the sensitivity and accuracy of measurements in available methods. This suppression is severe for low molecular weight organic compounds such as ethanolamines (, monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), -methyldiethanolamine (MDEA), and ,-ethyldiethanolamine (EDEA)). Here, we deployed solid phase extraction (SPE), mixed-mode LC, triple quadrupole MS with positive electrospray ionization (ESI), and a suite of stable isotope standards (, one per target compound) to correct for ion suppression by salts and organic matter, SPE losses, and instrument variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!