Protein display by bovine herpesvirus type 1 glycoprotein B.

Vet Microbiol

Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany.

Published: June 2010

Glycoprotein B (gB) of bovine herpesvirus 1 (BHV-1), a major component of the viral envelope, is essential for membrane fusion during entry and cell-to-cell spread. It is cleaved in the trans-Golgi network by the proprotein convertase furin. Integration of the open reading frame (ORF) encoding a mutated gB with a second furin cleavage site and mature boIFN-alpha as intervening peptide between the amino-terminal (NH(2)) and carboxy-terminal (COOH) gB subunits yielded recombinant BHV-1/gB2FuIFN-alpha which, unexpectedly, express gB with an enlarged NH(2)-subunit of 90kDa. Here we show that boIFN-alpha-specific antibodies bind to the 90kDa gB subunit and efficiently neutralize BHV-1/gB2FuIN-alpha infectivity. We also show that inactivated BHV-1/gB2FuIN-alpha virions induce an antiviral state in cells incubated with UV-inactivated particles. These results demonstrate that the 90kDa protein is a NH(2)-subunit/boIFN-alpha fusion protein whose boIFN-alpha domain is biologically active. To verify that BHV-1 gB is suitable for the display of (glyco)proteins on the surface of virions we constructed BHV-1 recombinants expressing within gB the first 273 amino acids of the NH(2)-subunit (HA1) of avian influenza haemagglutinin, either flanked by two furin cleavage sites or with only one cleavage site between a gB/NH(2)_HA1 fusion protein and the COOH subunit. The resulting recombinant BHV-1/gB2FuHA1 expressed gB from which 55kDa HA1 was excised and secreted. In contrast, gB from BHV-1/gB_NH(2)HA1 infected cells retained HA1 as fusion protein with the NH(2)-subunit. Immunoblotting and neutralization analyses revealed that HA1 is incorporated into the envelope BHV-1/gB/NH(2)_HA1 particles and exposed to the exterior of virions. Thus, this novel approach enables display of polypeptides and (glyco)proteins of at least 273 amino acids on viral particles which is of particular interest for development of novel diagnostics and vaccines as well as for, e.g. gene therapy applications especially when biologically active ligands need to be presented.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2010.02.011DOI Listing

Publication Analysis

Top Keywords

fusion protein
12
bovine herpesvirus
8
furin cleavage
8
cleavage site
8
biologically active
8
273 amino
8
amino acids
8
protein
5
protein display
4
display bovine
4

Similar Publications

Leptin drives glucose metabolism to promote cardiac protection via OPA1-mediated HDAC5 translocation and Glut4 transcription.

Funct Integr Genomics

January 2025

Department of Cardiology, Guizhou Provincial People`s Hospital, 83 Zhongshan East Road, Guiyang City, 550002, Guizhou Province, China.

Metabolic reprogramming, the shifting from fatty acid oxidation to glucose utilization, improves cardiac function as heart failure (HF) progresses. Leptin plays an essential role in regulating glucose metabolism. However, the crosstalk between leptin and metabolic reprogramming is poorly understood.

View Article and Find Full Text PDF

Antibodies, essential components of adaptive immunity, derive their remarkable diversity primarily from V(D)J gene rearrangements, particularly within the heavy chain complementarity-determining region 3 (CDR-H3) where D genes play a major role. Traditionally, D genes were thought to recombine only in the forward direction, despite having identical recombination signal sequences (12 base pair spacers) at both ends. This observation led us to question whether these symmetrical sequences might enable bidirectional recombination.

View Article and Find Full Text PDF

Bacterial mastitis in dairy cow is often caused by a combination of bacterial infections, such as Escherichia coli, Staphylococcus aureus, and Streptococcus agalactiae. Currently, there is no effective vaccine against the disease. Therefore, we constructed a recombinant subunit vaccine by fusing gene fragments of E.

View Article and Find Full Text PDF

Background: Radix Bupleuri (RB) and acetaminophen (APAP) are two popular medications having potential hepatotoxicity and substantial risks of irrational co-administration and excessive use, posing an overlooked danger of drug-induced liver injury (DILI). Autophagy is a protective mechanism against APAP-induced DILI, yet, saikosaponin d (SSd) in RB has been characterized to regulate autophagy, although the current findings are controversial.

Purpose: We aim to elucidate whether SSd promoted APAP-induced liver injury by regulating autophagy.

View Article and Find Full Text PDF

Identification of potential drug-target interactions (DTIs) is a crucial step in drug discovery and repurposing. Although deep learning effectively deciphers DTIs, most deep learning-based methods represent drug features from only a single perspective. Moreover, the fusion method of drug and protein features needs further refinement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!