A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells. | LitMetric

Synergistic effects of electrospun PLLA fiber dimension and pattern on neonatal mouse cerebellum C17.2 stem cells.

Acta Biomater

Nanoscience and Nanotechnology Initiative, Division of Bioengineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.

Published: August 2010

Topographical features, including fiber dimensions and pattern, are important aspects in developing fibrous scaffolds for tissue engineering. In this study aligned poly(l-lactide) (PLLA) fibers with diameters of 307+/-47, 500+/-53, 679+/-72 and 917+/-84 nm and random fibers with diameters of 327+/-40, 545+/-54, 746+/-82 and 1150+/-109 nm were obtained by optimizing the electrospinning parameters. We cultured neonatal mouse cerebellum C17.2 cells on the PLLA fibers. These neural stem cells (NSCs) exhibited significantly different growth and differentiation depending upon fiber dimension and pattern. On aligned fibers cell viability and proliferation was best on 500 nm fibers, and reduced on smaller or larger fibers. However, on random fibers cell viability and proliferation was best with the smallest (350 nm) and largest (1150 nm) diameter fibers. Polarized and elongated cells were orientated along the fiber direction on the aligned fibers, with focal contacts bridging the cell body and aligned fibers. Cells of spindle and polygonal morphologies were randomly distributed on the random fibers, with no focal contacts observed. Moreover, longer neurites were obtained on the aligned fibers than random fibers within the same diameter range. Thus, the surface topographic morphologies of fibrous scaffolds, including fiber pattern, dimensions and mesh size, play roles in regulating the viability, proliferation and neurite outgrowth of NSCs. Nevertheless, our results indicated that aligned 500 nm fiber are most promising for fine tuning the design of a nerve scaffold.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2010.02.039DOI Listing

Publication Analysis

Top Keywords

random fibers
16
aligned fibers
16
fibers
13
viability proliferation
12
fiber dimension
8
dimension pattern
8
neonatal mouse
8
mouse cerebellum
8
cerebellum c172
8
stem cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!