Objective: To investigate the expression of liver X receptors (LXR) in hypertrophic myocardium and the effect of LXR agonist T0901317 on angiotensin II (AngII) induced cardiomyocyte hypertrophy.
Methods: Transverse aortic coarctation (TAC) or sham operation were performed in 2-month-old wide type mice (C57/B6). Two weeks later, the expression of LXR in myocardium was detected by quantitative real-time PCR analysis and Western blot analysis. The effect of LXR agonist T0901317 on AngII-induced hypertrophy in cultured neonatal rat cardiomyocytes was also assessed.
Results: Quantitative real-time PCR analysis and Western blot analysis showed that LXRalpha but not LXRbeta expression was upregulated post TAC both at mRNA and protein levels (All P < 0.05). AngII induced increased [(3)H] leucine incorporation and cardiomyocyte hypertrophy were significantly reduced by T0901317 in a dose-dependent manner (P < 0.05). T0901317 also dose-dependently inhibited atrial natriuretic peptide (ANP) gene expression in cardiomyocytes (P < 0.05).
Conclusion: Our findings strongly suggest that LXR is a potent mediator of cardiomyocyte hypertrophy and LXR activation could attenuate AngII induced cardiomyocyte hypertrophy in vitro.
Download full-text PDF |
Source |
---|
Acta Pharmacol Sin
January 2025
Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Key Laboratory of Metabolic Disease Prevention and Treatment of Traditional Chinese Medicine, Key Unit of Modulating Liver to Treat Hyperlipemia SATCM, State Administration of Traditional Chinese Medicine, Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
Cardiac fibrosis characterized by aberrant activation of cardiac fibroblasts impairs cardiac contractile and diastolic functions, inducing the progression of the disease towards its terminal phase, resulting in the onset of heart failure. Therefore, the inhibition of cardiac fibrosis has become a promising treatment for cardiac diseases. The ovarian follicle-stimulating hormone folliculin (FLCN) plays a significant role in various biological processes, such as lysosome function, mitochondrial synthesis, angiogenesis, ciliogenesis and autophagy.
View Article and Find Full Text PDFJ Allergy Clin Immunol
January 2025
Institute of Human Genetics, UMR9002, CNRS and Montpellier University; Montpellier, France; Montpellier University; Montpellier, France; Immunology Department, University Hospital; Nîmes, France. Electronic address:
Background: We have recently shown that, during acute severe COVID-19, SARS-CoV-2 spike protein (S) induces a cascade of events resulting in T cell apoptosis. Indeed, by neutralizing the protease activity of its receptor, ACE2, S induces an increase in circulating Angiotensin II (AngII), resulting in monocytic release of reactive oxygen species (ROS) and programmed T cell death.
Objective: Here, we tested whether SARS-CoV-2 mRNA vaccines, known to cause the circulation of the vaccine antigen, S-protein receptor binding domain (RBD), might trigger the same cascade.
PLoS One
January 2025
Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
Atrial fibrillation (AF) represents the commonly occurring cardiac arrhythmia and the main factor leading to stroke and heart failure. Hydrogen (H2) is a gaseous signaling molecule that has the effects of anti-inflammation and antioxidation. Our study provides evidence that hydrogen decreases susceptibility to AngII-mediated AF together with atrial fibrosis.
View Article and Find Full Text PDFBiomedicines
November 2024
Department of Physiology and Immunology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, J. Huttlera 4, 31000 Osijek, Croatia.
: Increased sodium chloride (NaCl) intake led to leukocyte activation and impaired vasodilatation via increased oxidative stress in human/animal models. Interestingly, subpressor doses of angiotensin II (AngII) restored endothelium-dependent vascular reactivity, which was impaired in a high-salt (HS) diet in animal models. Therefore, the present study aimed to assess the effects of AngII exposure following high salt (HS) loading on endothelial cells' (ECs') viability, activation, and reactive oxygen species (ROS) production.
View Article and Find Full Text PDFJ Mol Med (Berl)
January 2025
Wuxi School of Medicine, Jiangnan University, Jiangsu Province, 1800 Lihu Rd, Wuxi, 214122, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!