The yeast three-hybrid system (Y3H), a powerful method for identifying RNA-binding proteins, still suffers from many false positives, due mostly to RNA-independent interactions. In this study, we attempted to efficiently identify false positives by introducing a tetracycline operator (tetO) motif into the RPR1 promoter of an RNA hybrid expression vector. We successfully developed a tight tetracycline-regulatable RPR1 promoter variant containing a single tetO motif between the transcription start site and the A-box sequence of the RPR1 promoter. Expression from this tetracycline-regulatable RPR1 promoter in the presence of tetracycline-response transcription activator (tTA) was positively controlled by doxycycline (Dox), a derivative of tetracycline. This on-off control runs opposite to the general knowledge that Dox negatively regulates tTA. This positively controlled RPR1 promoter system can therefore efficiently eliminate RNA-independent false positives commonly observed in the Y3H system by directly monitoring RNA hybrid expression.

Download full-text PDF

Source
http://dx.doi.org/10.5483/bmbrep.2010.43.2.110DOI Listing

Publication Analysis

Top Keywords

rpr1 promoter
20
rna hybrid
12
hybrid expression
12
false positives
12
expression vector
8
yeast three-hybrid
8
three-hybrid system
8
teto motif
8
tetracycline-regulatable rpr1
8
tta positively
8

Similar Publications

Development of a CRISPR/Cas9-Based Tool for Gene Deletion in .

mSphere

June 2019

Department of Chemical and Biomolecular Engineering, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA

The nonconventional yeast has emerged as a potential platform microorganism for production of organic acids due to its ability to grow robustly under highly acidic conditions. However, lack of efficient genetic tools remains a major bottleneck in metabolic engineering of this organism. Here we report that the autonomously replicating sequence (ARS) from (ScARS) was functional for plasmid replication in , and the resulting episomal plasmid enabled efficient genome editing by the CRISPR/Cas9 system.

View Article and Find Full Text PDF

The yeast three-hybrid system (Y3H), a powerful method for identifying RNA-binding proteins, still suffers from many false positives, due mostly to RNA-independent interactions. In this study, we attempted to efficiently identify false positives by introducing a tetracycline operator (tetO) motif into the RPR1 promoter of an RNA hybrid expression vector. We successfully developed a tight tetracycline-regulatable RPR1 promoter variant containing a single tetO motif between the transcription start site and the A-box sequence of the RPR1 promoter.

View Article and Find Full Text PDF

Analysis of probenazole-responsiveness of rice RPR1 upstream fragments.

Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao

December 2007

Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China.

RPR1 (rice probenazole-responsive) is a rice gene, the expression of which is responsive to probenazole (PBZ), a synthetic compound that may act as a plant defense activator. It has been shown that RPR1 gene may be involved in disease resistance responses. In this study, a series of amplified fragments from the rice RPR1 promoter region, including 2,416 bp, 1,574 bp, 819 bp, 568 bp and 208 bp fragments upstream to the ATG translation start site, were prepared and linked to the coding region of beta-glucuronidase (GUS) gene.

View Article and Find Full Text PDF

Rsc4 connects the chromatin remodeler RSC to RNA polymerases.

Mol Cell Biol

July 2006

Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, F-91191 Gif-sur-Yvette Cedex, France.

RSC is an essential, multisubunit chromatin remodeling complex. We show here that the Rsc4 subunit of RSC interacted via its C terminus with Rpb5, a conserved subunit shared by all three nuclear RNA polymerases (Pol). Furthermore, the RSC complex coimmunoprecipitated with all three RNA polymerases.

View Article and Find Full Text PDF

We present the first comprehensive analysis of RNA polymerase III (Pol III) transcribed genes in ten yeast genomes. This set includes all tRNA genes (tDNA) and genes coding for SNR6 (U6), SNR52, SCR1 and RPR1 RNA in the nine hemiascomycetes Saccharomyces cerevisiae, Saccharomyces castellii, Candida glabrata, Kluyveromyces waltii, Kluyveromyces lactis, Eremothecium gossypii, Debaryomyces hansenii, Candida albicans, Yarrowia lipolytica and the archiascomycete Schizosaccharomyces pombe. We systematically analysed sequence specificities of tRNA genes, polymorphism, variability of introns, gene redundancy and gene clustering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!