Lipids and cholesterol as regulators of traffic in the endomembrane system.

Annu Rev Biophys

Cell Biology and Metabolism Program, NICHD, NIH, Bethesda, Maryland, USA.

Published: July 2010

The endomembrane system of eukaryotic cells uses membrane-enclosed carriers to move diverse macromolecules among different membrane-bound compartments, a requirement for cells to secrete and take up molecules from their environment. Two recycling pathways-biosynthetic and endocytic, each with specific lipid components-make up this system, with the Golgi apparatus mediating transport between the two. Here, we integrate lipid-based mechanisms into the description of this system. A partitioning model of the Golgi apparatus is discussed as a working hypothesis to explain how membrane lipids and proteins that are segregated based on lateral lipid partitioning support the unique composition of the biosynthetic and endocytic recycling pathways in the face of constant trafficking of molecular constituents. We further discuss how computational modeling can allow for interpretation of experimental findings and provide mechanistic insight into these important cellular pathways.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366628PMC
http://dx.doi.org/10.1146/annurev.biophys.093008.131357DOI Listing

Publication Analysis

Top Keywords

endomembrane system
8
golgi apparatus
8
lipids cholesterol
4
cholesterol regulators
4
regulators traffic
4
traffic endomembrane
4
system
4
system endomembrane
4
system eukaryotic
4
eukaryotic cells
4

Similar Publications

The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation.

View Article and Find Full Text PDF

Mammalian lactation is a dynamic process that develops throughout the lifespan of an organism. Here we present a framework for a third semester core course in biology that centers course content on lactation allowing examination of the developmental process as a dynamic whole-body experience involving changes occurring at the molecular, cellular, and organ levels of organization. Inequitable economic, socio- and geopolitical systems structure social determinants of health, affecting rates of breastfeeding in human populations.

View Article and Find Full Text PDF

The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.

View Article and Find Full Text PDF

Mechanisms of autophagosome formation.

Proc Jpn Acad Ser B Phys Biol Sci

January 2025

Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.

The formation of autophagosomes is a pivotal step in autophagy, a lysosomal degradation system that plays a crucial role in maintaining cellular homeostasis. After autophagy induction, phase separation of the autophagy-related (Atg) 1 complex occurs, facilitating the gathering of Atg proteins and organizes the autophagosome formation site, where the initial isolation membrane (IM)/phagophore is generated. The IM then expands after receiving phospholipids from endomembranes such as the endoplasmic reticulum.

View Article and Find Full Text PDF

Salt stress causes ion toxicity in plant cells and limits plant growth and crop productivity. Sodium ions (Na+) are transported out of the cell and sequestered in the vacuole for detoxification under salt stress. The salt excretion system is controlled by the SALT OVERLY SENSITIVE (SOS) pathway, which consists of the calcium sensors SOS3 and SOS3-LIKE CALCIUM BINDING PROTEIN 8, the protein kinase SOS2, and the plasma membrane Na+/H+ antiporter SOS1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!