Theoretical perspectives on protein folding.

Annu Rev Biophys

Biophysics Program, Institute for Physical Science and Technology and Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA.

Published: July 2010

Understanding how monomeric proteins fold under in vitro conditions is crucial to describing their functions in the cellular context. Significant advances in theory and experiments have resulted in a conceptual framework for describing the folding mechanisms of globular proteins. The sizes of proteins in the denatured and folded states, cooperativity of the folding transition, dispersions in the melting temperatures at the residue level, and timescales of folding are, to a large extent, determined by N, the number of residues. The intricate details of folding as a function of denaturant concentration can be predicted by using a novel coarse-grained molecular transfer model. By watching one molecule fold at a time, using single-molecule methods, investigators have established the validity of the theoretically anticipated heterogeneity in the folding routes and the N-dependent timescales for the three stages in the approach to the native state. Despite the successes of theory, of which only a few examples are documented here, we conclude that much remains to be done to solve the protein folding problem in the broadest sense.

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-biophys-051309-103835DOI Listing

Publication Analysis

Top Keywords

protein folding
8
folding
7
theoretical perspectives
4
perspectives protein
4
folding understanding
4
understanding monomeric
4
monomeric proteins
4
proteins fold
4
fold vitro
4
vitro conditions
4

Similar Publications

Assessment of Hsp90β-selective inhibitor safety and on-target effects.

Sci Rep

January 2025

Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.

The heat shock protein 90 (Hsp90) family of molecular chaperones mediates the folding and activation of ~ 400 client proteins, many of which contribute to oncogenesis. As a result, Hsp90 pan-inhibitors, which inhibit all four Hsp90 isoforms, have been investigated in the clinic for the treatment of cancer. Unfortunately, detrimental side effects were observed and hindered the clinical development of pan-Hsp90 inhibitors.

View Article and Find Full Text PDF

Unlabelled: During infection, bacterial pathogens rely on secreted virulence factors to manipulate the host cell. However, in gram-positive bacteria, the molecular mechanisms underlying the folding and activity of these virulence factors after membrane translocation are not clear. Here, we solved the protein structures of two secreted parvulin and two secreted cyclophilin-like peptidyl-prolyl isomerase (PPIase) ATP-independent chaperones found in gram-positive streptococcal species.

View Article and Find Full Text PDF

Living organisms exhibit an impressive ability to expand the basic information encoded in their genome, specifically regarding the structure and function of protein. Two basic strategies are employed to increase protein diversity and functionality: alternative mRNA splicing and post-translational protein modifications (PTMs). Enzymatic regulation is responsible for the majority of the chemical reactions occurring within living cells.

View Article and Find Full Text PDF

Enthalpy driven temperature-sensitive conformational changes in a metamorphic protein involved in the cyanobacterial circadian clock.

Int J Biol Macromol

January 2025

Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China. Electronic address:

Metamorphic proteins switch reversibly between distinctly different folds often with different functions under physiological conditions. Here, the kinetics and thermodynamics of the fold-switching at different temperatures in a metamorphic protein, KaiB, involved in cyanobacterial circadian clock, reveal that enthalpy-driven the fold-switching to form fold-switched KaiB (fsKaiB) and the fsKaiB and ground-state KaiB (gsKaiB) are more dominantly at lower and higher temperatures, respectively. Thermodynamic analysis indicates that conformational and solvent entropy have opposing effects on KaiB's fold-switching.

View Article and Find Full Text PDF

Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease.

J Neurochem

January 2025

Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada.

Highly abundant in neurons, the cellular prion protein (PrP) is an obligatory precursor to the disease-associated misfolded isoform denoted PrP that accumulates in the rare neurodegenerative disorders referred to either as transmissible spongiform encephalopathies (TSEs) or as prion diseases. The ability of PrP to serve as a substrate for this template-mediated conversion process depends on several criteria but importantly includes the presence or absence of certain endoproteolytic events performed at the cell surface or in acidic endolysosomal compartments. The major endoproteolytic events affecting PrP are referred to as α- and β-cleavages, and in this review we outline the sites within PrP at which the cleavages occur, the mechanisms potentially responsible and their relevance to pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!