The adsorption of atoms and molecules on single crystal surfaces allows one to produce well-characterized atomic, molecular, or dissociated adsorbates. Microcalorimetric measurement of the resulting adsorption energies, i.e., single crystal adsorption calorimetry, allows determination of the standard enthalpies of formation of these adsorbates. Methods are described for making an improved heat detector for such measurements, which greatly improves the signal-to-noise ratio, particularly at low temperatures (down to 100 K). The heat detector is an adaptation of a previously introduced design, based on a metallized pyroelectric polymer (beta-polyvinylidene fluoride), which is pressed against the back of a single crystal during measurement but removed during sample preparation and annealing. The improvement is achieved by selectively etching the metal coating of the polymer, thus reducing the pyro- and piezoelectric noise from all nonessential regions of the polymer. We, furthermore, describe how to achieve a better thermal contact between the sample and the pyroelectric polymer, without increasing the thermal mass of the detector, resulting in significantly improved sensitivities for both 1 and 127 microm thick samples. The result is a detector which, using 1 microm samples, is approximately 40 times more sensitive at 100 K than the traditional polymer-based detector, showing a pulse-to-pulse standard deviation in the heat of adsorption of just 1.3 kJ/mol with gas pulses containing only 1.1% of a monolayer onto Pt(111), for which 1 ML (monolayer) is 1.5x10(15) species/cm(2). For measurements at 300 K, where especially pyroelectric noise is likely of less concern, the new design improves the sensitivity 3.6-fold compared to the traditional detector. These improvements are furthermore used to propose a new detector design that is able to measure heats of adsorption on samples as thick as 127 microm with reasonable sensitivity.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.3290632DOI Listing

Publication Analysis

Top Keywords

single crystal
16
crystal adsorption
8
adsorption calorimetry
8
heat detector
8
pyroelectric polymer
8
127 microm
8
detector
7
adsorption
6
improved pyroelectric
4
pyroelectric detectors
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!