We investigate the characteristics of laser plasma debris that is responsible for damaging optics. The debris is composed of fast ions, neutral particles, and fragments, and originates from a solid Xe target on a rotating drum that we developed as an extreme ultraviolet (EUV) source. The ice fragments appear to be a problem most notably with solid Xe targets; however, we find that the damage induced by Xe ice fragments can be avoided by simply reducing the laser pulse energy. We find the number of fast neutral particles to be an order of magnitude less than the number of ions, and we clarify that the plasma debris is primarily composed of fast ions. In addition, we find that the number of fast ions having a few dozen keV of energy decreases when using the rotating target compared with the rest target. We attribute this to a gas curtain effect from the Xe gas localized at the rotating target surface. We estimate the sputtering rate of the Mo/Si mirror, which is caused primarily by the fast ions, to be 104 nm/1x10(6) shots at 190 mm from the source plasma and at an 11.25 degree angle from the incident laser beam. Up to the 1x10(6) shots exposure, remarkable degradation of the mirror reflectivity is not observed though the sputtering damages the mirror. Mitigation of the ions by using gas and/or magnetic fields will further improve the mirror lifetime. By comparing with a liquid jet Xe target, we conclude that the sputtering rate per conversion efficiency when using the solid Xe targets on the rotating drum is the same as that when using the liquid Xe targets. The high conversion efficiency of 0.9% in the rotating drum solid Xe target makes this technique useful for developing laser plasma EUV sources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3293461 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Physics, The Graduate Center of CUNY, New York, NY, USA.
There is increasing interest in studying molecular motions in ionic liquids to gain better insights into their transport properties and to expand their applications. In this study, we have employed the fast field cycling relaxometry and pulsed field gradient nuclear magnetic resonance techniques to investigate the rotational and translational dynamics of fluorinated imide-based ionic liquids (ILs) at different temperatures. We have studied a total of six ILs composed of the 1-butyl-3-methylimidazolium cation ([BMIM]) combined with chemically modified analogs of the bis((trifluoromethyl)sulfonyl)imide anion ([NTf] or [TFSI]).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
Two-dimensional (2D) PdSe atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe films with single-crystal domain areas exceeding 30 μm.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Low Temperature and Structure Research, Polish Academy of Science, ul. Okólna 2, Wrocław 50-422, Poland.
Research is ongoing to develop new phosphors capable of emitting light across a broad spectrum, ranging from the ultraviolet (UV) to the infrared region, with potential applications in diverse fields. Using the method of solid-state reactions, a series of LiBaF:Pr phosphors were obtained, and their luminescent properties in the UV-visible range were studied. The photon cascade emission (PCE) phenomenon has been observed under excitation of the 4f5d bands of Pr.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China. Electronic address:
Dimethoate (DIM) is one of the most extensively applied organophosphorus pesticides (OPs), which is used to boost farm productivity due to its high insecticidal efficacy. However, the excessive use of DIM can result in the extensive contamination of soil, groundwater and food. Monitoring of DIM in environmental and food samples is crucial in view of its potential health risks and environmental hazards from excessive residues.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Korea.
ConspectusWater-in-salt electrolytes (WiSEs) are promising electrolytes for next-generation lithium-ion batteries (LIBs), offering critical advantages like nonflammability and improved safety. These electrolytes have extremely high salt concentrations and exhibit unique solvation structures and transport mechanisms dominated by the formation of ion networks and aggregates. These ion networks are central to the performance of WiSEs, govern the transport properties and stability of the electrolyte, deviating from conventional dilute aqueous or organic electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!