SPIRAL2 is the new project under construction at GANIL to produce radioactive ion beams and in particular neutron rich ion beams. For the past 10 yr SPIRAL1 at GANIL has been delivering accelerated radioactive ion beams of gases. Both facilities now need to extend the range of radioactive ion beams produced to condensable elements. For that purpose, a resonant ionization laser ion source, funded by the French Research National Agency, is under development at GANIL, in collaboration with IPN Orsay, University of Mainz (Germany) and TRIUMF, Vancouver (Canada). A description of this project called GISELE (GANIL Ion Source using Electron Laser Excitation) is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3279301 | DOI Listing |
Phys Med Biol
January 2025
Department of Accelerator and Medical Physics, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, JAPAN.
The tumor microenvironment characterized by heterogeneously organized vasculatures causes intra-tumoral heterogeneity of oxygen partial pressure at the cellular level, which cannot be measured by current imaging techniques. The intra-tumoral cellular heterogeneity may lead to a reduction of therapeutic effects of radiation. The purpose of this study was to investigate the effects of the heterogeneity on biological effectiveness of H-, He-, C-, O-, and Ne-ion beams for different oxygenation levels, prescribed dose levels, and cell types.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, China.
Regulating the spintronic structure of electrocatalysts can improve the oxygen evolution reaction performance efficiently. Nonetheless, the effects of tuning the spintronic structure for the oxygen evolution reaction mechanisms have rarely been discussed. Here, we show a ruthenium-cobalt-tin oxide with optimized spintronic structure due to the quantum spin interaction of Ru and Co.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Normal University, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Material, School of Physics and Telecommunication Engineering, Panyu University Mega Center, 510006, Guangzhou, CHINA.
Scintillators that convert ionizing radiation into low-energy photons are essential for medical diagnostics and industrial inspections. Despite advances in X-ray scintillators, challenges remain in achieving high efficiency, environmental compatibility, stability, and flexibility. Here, we present experimental investigations of a new type of europium(III)-based hybrid ternary complex scintillators for improved X-ray detection and imaging.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Departmento de Fisica, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile.
Low-energy light ion beams are an essential resource in lithography for nanopatterning magnetic materials and interfaces due to their ability to modify the structure and properties of metamaterials. Here we create ferromagnetic/non-ferromagnetic heterostructures with a controlled layer thickness and nanometer-scale precision. For this, hydrogen ion (H) irradiation is used to reduce the antiferromagnetic nickel oxide (NiO) layer into ferromagnetic Ni with lower fluence than in the case of helium ion (He) irradiation.
View Article and Find Full Text PDFMol Cancer Ther
December 2024
National Center for Tumor Diseases, Heidelberg, Germany.
Ultra-high dose rate radiotherapy with electrons and protons has shown potential for cancer treatment by effectively targeting tumors while sparing healthy tissues (FLASH effect). This study aimed to investigate the potential FLASH sparing effect of ultra-high-dose rate helium ion irradiation, focusing on acute brain injury and subcutaneous tumor response in a preclinical in vivo setting. Raster-scanned helium ion beams were used to compare the effects of standard dose rate (SDR at 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!