Laser ion sources based on resonant excitation and ionization of atoms are well-established tools for selective and efficient production of radioactive ion beams. Recent developments are focused on the use of the state-of-the-art all solid-state laser systems. To date, 35 elements of the periodic table are available from laser ion sources based on tunable Ti:sapphire lasers. Recent progress in this field regarding the establishment of suitable optical excitation schemes for Ti:sapphire lasers are reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3273067 | DOI Listing |
Talanta
January 2025
Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China. Electronic address:
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has become a robust tool for analyzing a variety of biomacromolecules. However, the strong background interference produced by conventional organic matrices hinders the detection of small molecule analytes, which restricts the widespread application of MALDI-MS in metabolomics studies. Consequently, developing new organic matrices is urgently needed to overcome these issues.
View Article and Find Full Text PDFPhytomedicine
December 2024
Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:
Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.
View Article and Find Full Text PDFMass Spectrom (Tokyo)
December 2024
Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.
Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China.
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.
View Article and Find Full Text PDFSmall
January 2025
College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, China.
Electrochemical Li extraction technology is a highly promising approach for Li extraction from salt lakes. To enhance its practical application, it is crucial to elucidate the ion/electron transfer mechanism under diverse process conditions particularly different electron fluxes. Different migration intermediate states demonstrate the distinct ion migration mechanisms inside the LiMnO lattice at different electron fluxes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!