As part of a new heavy ion preinjector that will supply beams for the Relativistic Heavy Ion Collider and the National Aeronautics and Space Administration Space Radiation Laboratory, construction of a new electron beam ion source (EBIS) is now being completed. This source, based on the successful prototype Brookhaven National Laboratory Test EBIS, is designed to produce milliampere level currents of all ion species, with q/m=(1/6)-(1/2). Among the major components of this source are a 5 T, 2-m-long, 204 mm diameter warm bore superconducting solenoid, an electron gun designed to operate at a nominal current of 10 A, and an electron collector designed to dissipate approximately 300 kW of peak power. Careful attention has been paid to the design of the vacuum system, since a pressure of 10(-10) Torr is required in the trap region. The source includes several differential pumping stages, the trap can be baked to 400 C, and there are non-evaporable getter strips in the trap region. Power supplies include a 15 A, 15 kV electron collector power supply, and fast switchable power supplies for most of the 16 electrodes used for varying the trap potential distribution for ion injection, confinement, and extraction. The EBIS source and all EBIS power supplies sit on an isolated platform, which is pulsed up to a maximum of 100 kV during ion extraction. The EBIS is now fully assembled, and operation will be beginning following final vacuum and power supply tests. Details of the EBIS components are presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3292937 | DOI Listing |
Int J Mol Sci
December 2024
School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
LiMnO, a significant cathode material for lithium-ion batteries, has garnered considerable attention due to its low cost and environmental friendliness. However, its widespread application is constrained by its rapid capacity degradation and short cycle life at elevated temperatures. To enhance the electrochemical performance of LiMnO, we employed a liquid-phase co-precipitation and calcination method to incorporate Cr into the LiMnO cathode material, successfully synthesizing a series of LiCrMnO (x = 0~0.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
In lithium metal batteries, accurately estimating the Li solvation ability of solvents is essential for effectively modulating the Li solvation sheath to form a stable interphase and achieve high ionic conductivity. However, previous studies have shown that the theoretically calculated Li binding energy, commonly used to evaluate solvation ability, exhibits only a moderate correlation with experimentally measured ionic conductivity (R = 0.68).
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2024
Department of Environmental and Safety Engineering, Ajou University, Suwon 16499, Republic of Korea.
The demand for the use of secondary batteries is increasing rapidly worldwide in order to solve global warming and achieve carbon neutrality. Major minerals used to produce cathode materials, which are key raw materials for secondary batteries, are treated as conflict minerals due to their limited reserves, and accordingly, research on the battery recycling industry is urgent for the sustainable secondary battery industry. There is a significant risk of accidents because there is a lack of prior research data on the battery recycling process and various chemicals are used in the entire recycling process.
View Article and Find Full Text PDFUnlabelled: Guanosine triphosphate (GTP) is essential for macromolecular biosynthesis, and its intracellular levels are tightly regulated in bacteria. Loss of the alarmone (p)ppGpp disrupts GTP regulation in , causing cell death in the presence of exogenous guanosine and underscoring the critical importance of GTP homeostasis. To investigate the basis of guanosine toxicity, we performed a genetic selection for spontaneous mutations that suppress this effect, uncovering an unexpected link between GTP synthesis and glycolysis.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang, 43000, Selangor, Malaysia.
The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!