Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3272830 | DOI Listing |
Integr Environ Assess Manag
January 2025
United States Geological Survey, Upper Midwest Water Science Center, Madison, WI, United States.
Aircraft anti-icers and pavement deicers improve the safety of airport operations during winter precipitation events. Runoff containing these products can contribute elevated biochemical oxygen demand (BOD) to receiving streams. We monitored runoff from Milwaukee Mitchell International Airport at one upstream site, three outfall sites, and one downstream site from 2005 to 2022 for BOD, chemical oxygen demand (COD), and freezing point depressants used in deicing and anti-icing fluids to determine the primary sources of BOD and COD in the receiving stream.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Chemical Engineering and Environmental Technology, Universidad de Zaragoza, Campus Río Ebro-Edificio I+D, 50018 Zaragoza, Spain.
The emergence of green chemistry and engineering principles to enforce sustainability aspects has ensured the prevalence of green solvents and green processes. Our study addresses this quest by exploring drug delivery applications of hydrophobic deep eutectic solvents (DESs) which are alternative green solvents. Initially, this work showcases the hydrophobic drug solubilization capabilities of a natural hydrophobic DES, menthol, and decanoic acid.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute of New Energy Technology, College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China.
Trigonal selenium (t-Se) is a promising wide-band-gap photovoltaic material with a high absorption coefficient, abundant resources, simple composition, nontoxicity, and a low melting point, making it suitable for absorbers in advanced indoor and tandem photovoltaic applications. However, severe electrical losses at the rear interface of the t-Se absorber, caused by work function and lattice mismatches, limit the voltage output and overall performance. In this study, a strategy to enhance carrier transport and collection by modifying interfacial chemical interactions is proposed.
View Article and Find Full Text PDFJ Chem Phys
January 2025
School of Chemistry, Beihang University, Beijing 100191, China.
Dynamic density functional theory (DDFT) is a fruitful approach for modeling polymer dynamics, benefiting from its multiscale and hybrid nature. However, the Onsager coefficient, the only free parameter in DDFT, is primarily derived empirically, limiting the accuracy and broad application of DDFT. Herein, we propose a machine learning-based, bottom-up workflow to directly extract the Onsager coefficient from molecular simulations, circumventing partly heuristic assumptions in traditional approaches.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Institute of Photoelectronic Thin Film Devices and Technology, Tianjin Key Laboratory of Thin Film Devices and Technology, Nankai University, Tianjin 300350, China.
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) has emerged as a promising photovoltaic material due to its low cost and high stability. The CZTSSe film for high-performance solar cells can be obtained by annealing the deposited CZTS precursor films with selenium (a process known as selenization). The design of the selenization process significantly affects the quality of the absorber layer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!