In an effort to develop a source of H(3)(+) that is almost entirely in a single quantum state (J=K=1), we have successfully generated a plasma that is enriched to approximately 83% in para-H(3)(+) at a rotational temperature of 80 K. This enrichment is a result of the nuclear spin selection rules at work in hydrogenic plasmas, which dictate that only para-H(3)(+) will form from para-H(2), and that para-H(3)(+) can be converted to ortho-H(3)(+) by subsequent reaction with H(2). This is the first experimental study in which the H(2) and H(3) (+) nuclear spin selection rules have been observed at cold temperatures. The ions were produced from a pulsed solenoid valve source, cooled by supersonic expansion, and interrogated via continuous-wave cavity ringdown spectroscopy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.3322827 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!