We demonstrate the fabrication of nanoperforated graphene materials with sub-20-nm features using cylinder-forming diblock copolymer templates across >1 mm(2) areas. Hexagonal arrays of holes are etched into graphene membranes, and the remaining constrictions between holes interconnect forming a honeycomb structure. Quantum confinement, disorder, and localization effects modulate the electronic structure, opening an effective energy gap of 100 meV in the nanopatterned material. The field-effect conductivity can be modulated by 40x (200x) at room temperature (T = 105 K) as a result. A room temperature hole mobility of 1 cm(2) V(-1) s(-1) was measured in the fabricated nanoperforated graphene field effect transistors. This scalable strategy for modulating the electronic structure of graphene is expected to facilitate applications of graphene in electronics, optoelectronics, and sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl9032318DOI Listing

Publication Analysis

Top Keywords

nanoperforated graphene
12
graphene materials
8
electronic structure
8
room temperature
8
graphene
6
fabrication characterization
4
characterization large-area
4
large-area semiconducting
4
semiconducting nanoperforated
4
materials demonstrate
4

Similar Publications

Article Synopsis
  • * Extensive measurements on a single chip help to evaluate the electrical properties of these nanomesh structures, which are crucial for energy harvesting applications.
  • * The triangle nanomesh structure outperforms the others with excellent characteristics, including a 420 Ω differential resistance, responsivity over 10 V/W, and a low noise equivalent power of 847 pW/√Hz at 0 V.
View Article and Find Full Text PDF

Graphene nano-sieves by femtosecond laser irradiation.

Nanotechnology

December 2022

Foundation of Research and Technology Hellas, Institute of Chemical Engineering Sciences, PO Box 1414, GR-26504 Patras, Greece.

The formation of nano-pores in graphene crystal structure is alternative way to engineer its electronic properties, chemical reactivity, and surface interactions, enabling applications in technological fields such as sensing, energy and separation. The past few years, nano-perforation of graphene sheets has been accomplished by a variety of different methods suffering mainly from poor scalability and cost efficiency issues. In this work, we introduce an experimental protocol to engineer nanometer scale pores in CVD graphene membranes under ambient conditions, using low power ultra-short laser pulses and overcoming the drawbacks of other perforation techniques.

View Article and Find Full Text PDF

We report the batch fabrication of graphene field-effect-transistors (GFETs) with nanoperforated graphene as channel. The transistors were cut and encapsulated. The encapsulated GFETs display saturation regions that can be tuned by modifying the top gate voltage, and have on/off ratios of at least 2 × 10 at room temperature and at small drain and gate voltages.

View Article and Find Full Text PDF

In this work, we demonstrate that a preassembled block copolymer (BCP) thin film can be floated, transferred, and utilized to effectively nanopattern unconventional substrates. As target substrates, we chose Cu foil and graphene/Cu foil since they cannot be nanopatterned via conventional processes due to the high surface roughness and susceptibility to harsh processing chemicals and etchants. Perpendicular hexagonal PMMA cylinder arrays in diblock copolymer poly(styrene-block-methyl methacrylate) [P(S-b-MMA)] thin films were preassembled on sacrificial SiO2/Si substrates.

View Article and Find Full Text PDF

High performance is reported for a symmetric ultracapacitor (UC) cell made up of hierarchically perforated graphene nanosheets (HPGN) as an electrode material with excellent values of energy density (68.43 Wh kg⁻¹) and power density (36.31 kW kg⁻¹).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!