Bioreactor systems have been developed as alternatives to standard culture flasks due to their homogeneous nature, easiness of monitoring and increased cell production. Here we investigated the in vitro expansion of bone marrow (BM) mesenchymal stem cells (MSC) in spinner flasks, using gelatin microcarriers (Cultispher S) to support cell adhesion and proliferation. MSC expansion was performed using a low-serum containing medium (2% of fetal bovine serum, FBS). A strategy was defined for the maximization of cell expansion: microcarriers were pre-coated with FBS in order to increase cell seeding efficiency and an adequate feeding regime was established (25% medium exchange everyday). The maximum cell density, 4.2 x 10(5)cells/mL, was obtained at day 8, corresponding to a fold increase in total cell number of 8.4+/-0.8. Expanded MSC retained their differentiation potential into adipogenic and osteogenic lineages, as well as their clonogenic ability. Harvested cells expressed >90% of CD73, CD90 and CD105 markers. These results demonstrated that a microcarrier-based stirred culture system is adequate for human MSC expansion, using a low-serum containing medium, allowing the generation of significant cell numbers for potential applications in regenerative medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiotec.2010.02.015DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
8
stem cells
8
microcarrier-based stirred
8
stirred culture
8
culture system
8
msc expansion
8
low-serum medium
8
cell
7
expansion
5
maximizing vivo
4

Similar Publications

Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events. This prothrombotic state is considered a key factor in the increased risk of stroke, which is observed clinically during both acute infection and long after symptoms clear. Here, we develop a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells (ECs), pericytes (PCs), and smooth muscle cells (SMCs) to recapitulate the vascular pathology associated with SARS-CoV-2 exposure.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

Current perspectives on the dynamic culture of mesenchymal stromal/stem cell spheroids.

Stem Cells Transl Med

December 2024

Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.

Mesenchymal stromal/stem cells (MSCs) are promising candidates for regenerative medicine owing to their self-renewal properties, multilineage differentiation, immunomodulatory effects, and angiogenic potential. MSC spheroids fabricated by 3D culture have recently shown enhanced therapeutic potential. MSC spheroids create a specialized niche with tight cell-cell and cell-extracellular matrix interactions, optimizing their cellular function by mimicking the in vivo environment.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC) constitutes a significant proportion of lung cancer cases, and despite advancements in treatment modalities, radiotherapy resistance remains a substantial hurdle in effective cancer management. Exosomes, which are small vesicles secreted by cells, have emerged as pivotal players in intercellular communication and influence various biological processes, including cancer progression and the response to therapy. This review discusses the intricate role of exosomes in the modulation of NSCLC radiosensitivity.

View Article and Find Full Text PDF

In mammalian species, neural tissues cannot regenerate following severe spinal cord injury (SCI), for which stem cell transplantation is a promising treatment. Neural stem cells (NSCs) have the potential to repair SCI; however, in unfavourable microenvironments, transplanted NSCs mainly differentiate into astrocytes rather than neurons. In contrast, bone mesenchymal stem cells (BMSCs) promote the differentiation of NSCs into neurons and regulate inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!