Sequential neural activity patterns are as ubiquitous as the outputs they drive, which include motor gestures and sequential cognitive processes. Neural sequences are long, compared to the activation durations of participating neurons, and sequence coding is sparse. Numerous studies demonstrate that spike-time-dependent plasticity (STDP), the primary known mechanism for temporal order learning in neurons, cannot organize networks to generate long sequences, raising the question of how such networks are formed. We show that heterosynaptic competition within single neurons, when combined with STDP, organizes networks to generate long unary activity sequences even without sequential training inputs. The network produces a diversity of sequences with a power law length distribution and exponent -1, independent of cellular time constants. We show evidence for a similar distribution of sequence lengths in the recorded premotor song activity of songbirds. These results suggest that neural sequences may be shaped by synaptic constraints and network circuitry rather than cellular time constants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2010.02.003DOI Listing

Publication Analysis

Top Keywords

spike-time-dependent plasticity
8
heterosynaptic competition
8
organize networks
8
neural activity
8
neural sequences
8
networks generate
8
generate long
8
cellular time
8
time constants
8
sequences
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!