Fluorescence lifetime probe of biomolecular conformations.

J Am Soc Mass Spectrom

Rowland Institute at Harvard, Cambridge, Massachusetts 02142, USA.

Published: May 2010

Methods have been developed to measure the fluorescence lifetime versus temperature of trapped biomolecular ions derivatized with a fluorescent dye. Previous measurements for different sequences of polyproline peptides demonstrated that quenching rates are related to conformations and their spatial fluctuations. This paper presents the results of extending these methods to study the conformational dynamics of larger biomolecules. Vancomycin-peptide noncovalent complexes in the 1+ charge state were studied as a function of temperature for different W-KAA peptide chiralities (L-LDD, D-LDD, L-DLL). Fluorescence-quenching rates, k(q), were found to be stereoselective for these different chiralities with relative magnitudes k(q)(L-LDD) > k(q)(D-LDD) > k(q)(L-DLL). The variation in fluorescent quenching resulting from switching the chirality of the single Trp residue was readily detectable. Molecular dynamics analysis of complexes formed by W-KAA (L-LDD) and W-KAA(L-DLL) indicates that increased flexibility in the (L-DLL) complex is correlated with reduced quenching rates. Fluorescence measurements were also performed for the Trp-cage protein comparing quenching rates in the 1+, 2+, and 3+ charge states for which k(q)(+) >> k(q)(2+) approximately k(q)(3+). Measurements of a sequence including a single-point mutation infer the presence of a salt-bridge structure in the 1+ charge state and its absence in both the 2+ and 3+ states. Molecular dynamics structures of Trp-cage indicate that a salt bridge in the 1+ charge state produces more compact conformations leading to larger quenching rates based on the quenching mechanism. In both these experimental studies the fluorescence-quenching rates were consistent with changes in structure induced by either intermolecular or intramolecular interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jasms.2010.01.009DOI Listing

Publication Analysis

Top Keywords

quenching rates
16
charge state
12
fluorescence lifetime
8
fluorescence-quenching rates
8
molecular dynamics
8
quenching
6
rates
6
lifetime probe
4
probe biomolecular
4
biomolecular conformations
4

Similar Publications

Modeling inorganic glasses requires an accurate representation of interatomic interactions, large system sizes to allow for intermediate-range structural order, and slow quenching rates to eliminate kinetically trapped structural motifs. Neither first principles-based nor force field-based molecular dynamics (MD) simulations satisfy these three criteria unequivocally. Herein, we report the development of a machine learning potential (MLP) for a classic glass, B2O3, which meets these goals well.

View Article and Find Full Text PDF

Environmental concerns are driving the development of eco-friendly and effective methods for contaminant monitoring and remediation. In this study, a lanthanide porphyrin-based MOF with dual fluorescence sensing and photocatalytic properties was synthesized and applied for the detection and combined removal of Cr(VI) and ciprofloxacin (CIP). Using different excitation wavelengths, the material exhibited selective detection of Cr(VI) via fluorescence quenching and CIP through fluorescence enhancement.

View Article and Find Full Text PDF

This study reports a novel ratiometric fluorescence sensor based on a tetraphenylethylene-bipyridine covalent organic framework (TPE-Bpy-COF) for the sensitive detection of Cu, leveraging the unique coordination properties of the bipyridine moieties. The interaction between Cu and the nitrogen atoms in the bipyridine units induces fluorescence quenching at 500 nm through an efficient host-guest electron transfer mechanism, where excited-state electrons from the COF framework are transferred to the vacant orbitals of Cu. Upon excitation at 410 nm, the sensor exhibits a primary emission peak at 500 nm, which is quenched in the presence of Cu, while an overtone peak at 820 nm remains stable, serving as an internal reference for ratiometric measurements and significantly enhancing the accuracy and reliability of the sensor.

View Article and Find Full Text PDF

The incorporation of ZIF-67 into hydrogels for wastewater pollutant remediation has been widely studied, but the synthesis often requires organic solvents such as methanol or ethanol, which can result in the generation of toxic liquid waste. In this study, a novel hydrogel (ZIF-67@SL) was synthesized by integrating ZIF-67 into a dual-network system of sodium lignosulfonate (SL) and acrylamide (AM) using an in situ precipitation method in water. The material was characterized by XRD, FTIR, XPS, SEM, TEM, BET, and TGA analyses.

View Article and Find Full Text PDF

Development of Sensitive R6G/AuNCs Ratiometric Fluorescent Probes for the Detection of Biogenic Amines in Fish Products.

Int J Mol Sci

December 2024

School of Food Science and Engineering, Key Laboratory of Tropical and Vegetables Quality and Safety for State Market Regulation, Hainan University, Haikou 570228, China.

Biogenic amines (BAs), produced in fish and seafood due to microbial contamination, pose significant health risks. This study introduces a novel ratiometric fluorescent probe, synthesized by integrating rhodamine 6G(R6G) and gold nanoparticles (AuNCs), for the sensitive and specific detection of BAs. The probe operates on the principle of BAs hydrolysis, catalyzed by diamine oxidase, to produce hydrogen peroxide (HO), which selectively quenches the fluorescence of AuNCs at 620 nm, while the fluorescence of R6Gat 533 nm remains unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!