As a continuation of our efforts to discover and develop apoptosis inducing N-methyl-4-(4-methoxyanilino)quinazolines as novel anticancer agents, we explored substitution at the 5-, 6-, 7-positions of the quinazoline and replacement of the quinazoline by other nitrogen-containing heterocycles. A small group at the 5-position was found to be well tolerated. At the 6-position a small group like an amino was preferred. Substitution at the 7-position was tolerated much less than at the 6-position. Replacing the carbon at the 8-position or both the 5- and 8-positions with nitrogen led to about 10-fold reductions in potency. Replacement of the quinazoline ring with a quinoline, a benzo[d][1,2,3]triazine, or an isoquinoline ring showed that the nitrogen at the 1-position is important for activity, while the carbon at the 2-position can be replaced by a nitrogen and the nitrogen at the 3-position can be replaced by a carbon. Through the SAR study, several 5- or 6-substituted analogs, such as 2a and 2c, were found to have potencies approaching that of lead compound N-(4-methoxyphenyl)-N,2-dimethylquinazolin-4-amine (1g, EP128495, MPC-6827, Azixa).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2010.01.155DOI Listing

Publication Analysis

Top Keywords

quinazoline ring
8
replacement quinazoline
8
small group
8
tolerated 6-position
8
discovery n-methyl-4-4-methoxyanilinoquinazolines
4
n-methyl-4-4-methoxyanilinoquinazolines potent
4
potent apoptosis
4
apoptosis inducers
4
inducers structure-activity
4
structure-activity relationship
4

Similar Publications

This study aimed to determine the chromatographic retention and dissociation/protonation constant (pK) values of lapatinib and tamoxifen, key drugs used in metastatic breast cancer treatment, at 37°C using both conventional and green high-performance liquid chromatography (HPLC) methods. Qualitative analysis was conducted on an XTerra C18 column (250 ×4.6 mm I.

View Article and Find Full Text PDF

Structure-based design of new anticancer N3-Substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

Comput Biol Med

January 2025

Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt. Electronic address:

Epidermal growth factor receptor (EGFR) is amongst the earliest targeted kinases by small-molecule inhibitors for the management of EGFR-positive cancer types. While a few inhibitors are granted FDA approval for clinical use, discovery of new inhibitors is still of merit to enhance ligand-binding stability and subsequent enzyme inhibition. Thus, a structure-based design approach was adopted to devise a new series of twenty-nine N3-substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

View Article and Find Full Text PDF

Marine natural product-inspired discovery of novel BRD4 inhibitors with anti-inflammatory activity.

Eur J Med Chem

February 2025

Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Bromodomain-containing protein 4 (BRD4) has been identified as a promising target in drug discovery, and the development of novel specific BRD4 bromodomain inhibitors will benefit anti-inflammatory drug discovery as well as bromodomain function role disclose. Herein, inspired by marine quinazolinone alkaloid penipanoid C, we designed and synthesized a series of quinazolin-4(3H)-ones with diverse linkers between two aromatic ring systems. Among them, compound 25 possessed good in vitro BRD4 inhibitory activities (IC = 3.

View Article and Find Full Text PDF

Cancer, characterized by uncontrolled growth and spread of abnormal cells potentially influencing almost all tissues in the body, is one of the most devastating and lethal diseases throughout the world. Chemotherapy is one of the principal approaches for cancer treatment, but multidrug resistance and severe side effects represent the main barriers to the success of therapy, creating a vital need to develop novel chemotherapeutic agents. The 1,2,3-triazole moiety can be conveniently constructed by "click chemistry" and could exert diverse noncovalent interactions with various enzymes in cancer cells.

View Article and Find Full Text PDF

Thieno[2,3-d]pyrimidine fragment is not only bioistostere to quinazoline ring but also to purines which exist in nucleic acids responsible for several key biological processes of the living cells, thus it is of a great interest for many researchers. Thieno[2,3-d]pyrimidine ring has become an important scaffold for different compounds with versatile pharmacological activities including anticancer. These compounds exert their anticancer activity through variant mechanisms of action; one of these is the induction of different programmed cell death types as apoptosis and necroptosis which is an effective approach for cancer treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!