A nascent literature has postulated endocannabinoids (eCBs) as strong sleep-inducing lipids, particularly rapid-eye-movement sleep (REMs), nevertheless the exact mechanisms behind this effect remain to be determined. Anandamide and 2-arachidonyl glycerol, two of the most important eCBS, are synthesized in the hippocampus. This structure also expresses a high concentration of cannabinoid receptor 1 (CB1). Recent extensive literature supports eCBs as important regulators of hippocampal activity. It has also been shown that these molecules vary their expression on the hippocampus depending on the light-dark cycle. In this context we decided to analyze the effect of intrahippocampal administration of the eCB anandamide (ANA) on the sleep-waking cycle at two points of the light-dark cycle. Our data indicate that the administration of ANA directly into the hippocampus increases REMs in a dose dependent manner during the dark but not during the light phase of the cycle. The increase of REMs was blocked by the CB1 antagonist AM251. This effect was specific for the hippocampus since ANA administrations in the surrounding cortex did not elicit any change in REMs. These results support the idea of a direct relationship between hippocampal activity and sleep mechanisms by means of eCBs. The data presented here show, for the first time that eCBs administered into the hippocampus trigger REMs and support previous studies where chemical stimulation of limbic areas triggered sleep.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neulet.2010.02.044 | DOI Listing |
Glia
January 2025
Neurophysiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Autism spectrum disorder (ASD) is marked by neurobehavioral developmental deficits, potentially linked to disrupted neuron-glia interactions. The astroglia Kir4.1 channel plays a vital role in regulating potassium levels during neuronal activation, and mutations in this channel have been associated with ASD.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Department of Digestive and Nutrition, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China.
Neonatal hypoxic-ischemic encephalopathy (HIE) is a severe neurological injury during infancy, often resulting in long-term cognitive deficits. This study aimed to investigate the neuroprotective effects of Edaravone (EDA), a free radical scavenger, and elucidate the potential role of brain-derived neurotrophic factor (BDNF) in mediating these effects in neonatal HIE rats. Using the Rice-Vannucci model, HIE was induced in neonatal rats, followed by immediate administration of EDA after the hypoxic-ischemic insult.
View Article and Find Full Text PDFJ Nutr
December 2024
Faculty of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Japan. Electronic address:
Background: Food-derived nucleic acids exhibit various biological activities and may act as nutrients. Oral ingestion of the nucleic acid fraction (NAF) of salmon milt extract hydrolysates enhances cognitive function in mice, although their active ingredients have not yet been identified, and detailed mechanisms of action are unknown.
Objectives: To identify active ingredients enhancing cognitive function contained in the NAF and its possible underlying mechanism.
Epilepsy Behav
December 2024
Tufts University School of Medicine, Neuroscience Department, Boston, MA, USA. Electronic address:
Int J Mol Sci
November 2024
Unidad de Cartografía Cerebral, Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain.
4-aminopyridine (4-AP) is a non-selective blocker of voltage-dependent K channels used to improve walking in multiple sclerosis patients, and it may be useful in the treatment of cerebellar diseases. In animal models, 4-AP is used as a convulsant agent. When administered intrahippocampally, 4-AP induces acute local glucose hypermetabolism and significant brain damage, while i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!