Alkoxysilane having various functional headgroups (amino and mercapto) and morphologies was deposited by supercritical CO(2) onto a porous dielectric material to replace the metallic barrier used in semiconductor devices. These organic layers were successfully coated with Cu. The morphologies of the stacks were investigated by X-ray and neutron reflectometry and atomic force microscopy. Whereas PVD Cu deposition is not adapted to silanized dielectric material with mercapto and aminopropyltrimethoxysilane but acceptable with aminoethylaminopropyltrimethoxysilane, the MOCVD process is more interesting. XRR and NR data clearly indicate that silane layers remain intact after copper deposition and, depending on the Cu immobilization capability of the chemical function of the silane and its orientation into the layer, the Cu film morphologies are different. Dense, thin films having small Cu grains were obtained with an aminoethylaminopropyltrimethoxysilane layer, and thick films having a low density and large Cu grains were obtained with an aminopropyltrimethoxysilane layer. Nucleation and growth mechanisms are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la904771sDOI Listing

Publication Analysis

Top Keywords

copper deposition
8
dielectric material
8
alkoxysilane layers
4
layers compatible
4
compatible copper
4
deposition advanced
4
advanced semiconductor
4
semiconductor device
4
device applications
4
applications alkoxysilane
4

Similar Publications

A Redox-Active Copper Complex for Orthogonal Detection of Homocysteine Involving Fluorescence and Electrochemical Techniques.

Small

January 2025

Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, 364002, India.

The present work reports the synthesis, characterization, and excited state photo-physical studies of two copper(II) compounds, 1 & 2, which show interference-free emission with homocysteine (Hcy). Cu(II) complexes offer an orthogonal detection strategy involving fluorescence and electrochemical methods, paving the way for improved point-of-care diagnostics and early cardiovascular diseases intervention. The reduction-induced emission enhancement (RIEE) of Cu complexes facilitates the fluorescence measurement of Hcy at physiological pH.

View Article and Find Full Text PDF

Blue phosphorene, a two-dimensional, hexagonal-structured, semiconducting phosphorus, has gained attention as it is considered easier to synthesize on metal surfaces than its allotrope, black phosphorene. Recent studies report different structures of phosphorene, for example, on Cu(111), but the underlying mechanisms of their formation are not known. Here, using a combination of in situ ultrahigh vacuum low-energy electron microscopy and in vacuo scanning tunneling microscopy, we determine the time evolution of the surface structure and morphology during the deposition of phosphorus on single-crystalline Cu(111).

View Article and Find Full Text PDF

Identifying the Structure of Two-Dimensional ACuO (A = Na, K, Cs) Film on Cu(111) with Atomic Resolution.

J Phys Chem Lett

January 2025

College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry, Beijing Normal University, Beijing 100875, China.

The deposition of alkali metals on oxide surfaces has garnered significant interest due to their critical role in enhancing various catalytic processes. However, the atomic-scale characterization of these structures remains elusive, owing to the complex and competing interactions among the oxygen, the alkali metals, and the metal atoms within the oxides. In this work, we grew alkali metals (Na, K, Cs) on the copper oxide films on the Cu(111) surface and found the formation of hexagonally ordered monolayer films.

View Article and Find Full Text PDF

Poor wear- and corrosion-resistance of 316L SS implants are critical problems in orthopedic implants. This study aims to improve the wear- and corrosion-resistance of 316L SS through surface coating. In this study, a bilayer composite coating consisting of polyether ether ketone (PEEK) as the first layer, and titania (TiO)- and Cu-doped mesoporous bioactive glass nanoparticles (Cu-MBGNs) were deposited as the second layer on a 316L SS electrophoretic deposition (EPD).

View Article and Find Full Text PDF

Porous nanomaterials find wide-ranging applications in modern medicine, optoelectronics, and catalysis, playing a key role in today's effort to build an electrified, sustainable future. Accurate in situ quantification of their structural and surface properties is required to model their performance and improve their design. In this article, we demonstrate how to assess the porosity, surface area and utilization of a model nanoporous soft-landed copper oxide catalyst layer/carbon interface, which is otherwise difficult to resolve using physisorption or capacitance-based methods.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!