AI Article Synopsis

  • A study was conducted to examine how increased UV-B radiation affects chlorophyll fluorescence in soybeans using a pulse amplitude modulation fluorometer during various growth stages.
  • Results indicated that enhanced UV-B decreased chlorophyll content significantly across all growth stages, with the highest reduction during pod-setting, and led to a lowered maximum potential relative electron transport rate and effective quantum yield in specific light conditions.
  • The findings highlight that increased UV-B not only reduces critical photosynthesis components but also harms electron transport and protective mechanisms, ultimately lowering the photosynthetic efficiency of soybeans.

Article Abstract

To investigate the influence of enhanced UV-B radiation on chlorophyll fluorescence characteristics of soybean, pulse amplitude modulation fluorometer was employed to measure the fluorescence parameters and rapid light curves during different growth stages under the condition of simulating 20% enhancement of UV-B. Results showed that enhanced UV-B radiation reduced the chlorophyll contents by 5.03%, 7.70% and 10.38% in seedling, branching-flowering and pod-setting periods, respectively. In branching-flowering period, the value of Fv/Fm decreased by 6.13%. In seedling and branching-flowering periods, effective quantum yield(Y) diminished significantly during PAR >366 micromol x (m2 x s)(-1), the maximal potential relative electron transport rate (Pm) diminished by 28.92% and 15.49%, respectively. But Y and Pm had no significant difference in 3-leave and pod setting periods. Semi-light saturation points (l(k)) were diminished by 21.18% and 23.17% in 3-leave and seedling periods. Initial slope (a) was decreased by 21.05% in branching-flowering period. Enhanced UV-B radiation also significantly reduced non-photochemical quenching (NPQ) during PAR >366 micromol x (m2 x s)(-1) in seedling period and photochemical quenching (qP) during PAR >366 micromol x (m2 x s)(-1) in branching-flowering period. The results of this study suggested that enhanced UV-B radiation inhibited electron transport activity of PS II, injured light-harvesting systems and dissipative protection mechanisms, damaged photosynthesis system, thus diminished photosynthetic efficiency of soybean.

Download full-text PDF

Source

Publication Analysis

Top Keywords

enhanced uv-b
20
uv-b radiation
20
branching-flowering period
12
par >366
12
>366 micromol
12
micromol s-1
12
radiation chlorophyll
8
chlorophyll fluorescence
8
fluorescence characteristics
8
radiation reduced
8

Similar Publications

Antarctica's harsh environmental conditions, characterized by high levels of ultraviolet (UV) radiation, pose challenges for microorganisms. To survive in these extreme cold regions with heightened UV exposure, microorganisms employ various adaptive strategies, including photoprotective carotenoid synthesis. Carotenoids are garnering attention in the skin health industry because of their UV photoprotection potential, given the direct relationship between UV exposure and skin burns, and cancer.

View Article and Find Full Text PDF

Balancing the solar irradiance needs: optimising growth in sphagnum palustre through tailored UV-B effects.

BMC Plant Biol

January 2025

Hubei Key Laboratory of Biological Resource Protection and Utilization, Enshi, 445000, China.

Background: The carbon sequestration potential and water retention capacity of peatlands are closely linked to the growth dynamics of Sphagnum mosses. However, few studies have focused on the response of Sphagnum moss growth dynamics to UV-B radiation, and existing research has emphasized species differences. In this study, Sphagnum palustre L.

View Article and Find Full Text PDF

Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.

View Article and Find Full Text PDF

Regulatory Mechanism of Exogenous ABA on Gibberellin Signaling and Antioxidant Responses in Pall. Under UV-B Stress.

Int J Mol Sci

December 2024

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

In the present work, we examined the effects of exogenous abscisic acid (ABA) under ultraviolet B (UV-B) exposure on gibberellin (GA) production, signaling, and antioxidant-related genes in Pall (). Using transcriptomics, acetylated proteomics, and widely targeted metabolomics, the effects of UV-B stress on and the regulatory effects of exogenous ABA on it were revealed from multiple perspectives. The findings revealed that 's antioxidant enzyme genes were differentially expressed by UV-B radiation and were substantially enriched in the glutathione metabolic pathway.

View Article and Find Full Text PDF

The Molecular Mechanism Regulating Flavonoid Production in Pall. Against UV-B Damage Is Mediated by .

Int J Mol Sci

December 2024

Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China.

Elevated levels of reactive oxygen species (ROS) are caused by ultraviolet B radiation (UV-B) stress. In response, plants strengthen their cell membranes, impeding photosynthesis. Additionally, UV-B stress initiates oxidative stress within the antioxidant defense system and alters secondary metabolism, particularly by increasing the quantity of UV-absorbing compounds such as flavonoids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!