A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Respiratory muscle training reduces the work of breathing at depth. | LitMetric

Respiratory muscle training reduces the work of breathing at depth.

Eur J Appl Physiol

Department of Rehabilitation Science, Center for Research and Education in Special Environments, School of Public Health and Health Professions, State University of New York at Buffalo, Kimball Tower, Rm. 515, 3435 Main Street, Buffalo, NY 14214, USA.

Published: March 2010

Resistance respiratory muscle training (RRMT) increases respiratory muscle and swimming performance at depths down to 17 msw. It is unknown if RRMT improves swimming performance at greater depths and if the improvements are associated with a reduced work of breathing (WOB), altered respiratory mechanics and/or improved respiratory muscle performance. Eight male subjects (30.3 +/- 6.0 years) were tested swimming underwater in a hyperbaric chamber at 37 m of depth against a pre-determined load (70% VO(2)) until exhausted. End expiratory lung volume (EELV) was determined by subtracting inspiratory capacity from total lung capacity throughout the swims. The mechanical WOB on the lung was calculated as the integrated product of the transpulmonary pressure and ventilatory flow. Maximal expiratory (P EMAX) and inspiratory pressures (P IMAX) were measured pre- and post-RRMT. RRMT was performed every 30 s against spring loaded inspiratory and expiratory valves 30 min/day, 5 days/week, for 4 weeks. RRMT increased P (IMAX) and P (EMAX) by 40% (110 +/- 11 cmH2O (SD) vs. 155 +/- 22, p < 0.001) and 30% (148 +/- 33 cmH2O vs. 192 +/- 49, p < 0.001), respectively, respiratory endurance by 75% (19.7 +/- 15.4 min vs. 34.4 +/- 27.3, p = 0.010), and swimming endurance by 87% (26.4 +/- 9.7 min vs. 49.4 +/- 21.6, p = 0.004). The longer swimming time was associated with reduced V(E) and V(A) (p < 0.001), f(b) (p < 0.001), V(CO(2)) (p < 0.001) and WOB (p < 0.001). There were no changes in EELV post-RRMT. These results suggest the improved exercise performance post-RRMT was associated with stronger respiratory muscles, a decreased f b, and a reduced WOB.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00421-009-1275-3DOI Listing

Publication Analysis

Top Keywords

respiratory muscle
16
+/-
9
muscle training
8
work breathing
8
swimming performance
8
associated reduced
8
+/- cmh2o
8
+/- 0001
8
respiratory
7
0001
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!