Purpose: To investigate tissue dependence of the MRI-based thermometry in frozen tissue by quantification and comparison of signal intensity and T2* of ex vivo frozen tissue of three different types: heart muscle, kidney, and liver.
Materials And Methods: Tissue samples were frozen and imaged on a 0.5 Tesla MRI scanner with ultrashort echo time (UTE) sequence. Signal intensity and T2* were determined as the temperature of the tissue samples was decreased from room temperature to approximately -40 degrees C. Statistical analysis was performed for (-20 degrees C, -5 degrees C) temperature interval.
Results: The findings of this study demonstrate that signal intensity and T2* are consistent across three types of tissue for (-20 degrees C, -5 degrees C) temperature interval.
Conclusion: Both parameters can be used to calculate a single temperature calibration curve for all three types of tissue and potentially in the future serve as a foundation for tissue-independent MRI-based thermometry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832094 | PMC |
http://dx.doi.org/10.1002/jmri.22029 | DOI Listing |
Microsc Res Tech
January 2025
Department of Physics, East Tehran Branch, Islamic Azad University, Tehran, Iran.
SnO thin films were deposited on Si substrates by radio frequency (RF) magnetron sputtering technique, and the effects of different sputtering power (60-90 W) on the structural, surface morphological, and electrical properties of the film were investigated with XRD, Raman, AFM, SEM, and fore point probe. The deposited SnO film at lower RF was amorphous, while well-defined intense XRD signals at higher RF power indicated significant improvement in crystalline nature. E and A vibrating modes related to SnO were clearly observed in the Raman spectra.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Clinical Psychology, The Third Affiliated Hospital of Soochow University, Changzhou, China.
Background: Deutetrabenazine is a widely used drug for the treatment of tardive dyskinesia (TD), and post-marketing testing is important. There is a lack of real-world, large-sample safety studies of deutetrabenazine. In this study, a pharmacovigilance analysis of deutetrabenazine was performed based on the FDA Adverse Event Reporting System (FAERS) database to evaluate its relevant safety signals for clinical reference.
View Article and Find Full Text PDFPurpose: The long scan times of quantitative MRI techniques make motion artifacts more likely. For MR-Fingerprinting-like approaches, this problem can be addressed with self-navigated retrospective motion correction based on reconstructions in a singular value decomposition (SVD) subspace. However, the SVD promotes high signal intensity in all tissues, which limits the contrast between tissue types and ultimately reduces the accuracy of registration.
View Article and Find Full Text PDFFront Pediatr
December 2024
Department of Medical Imaging, Second Hospital of Hebei Medical University, Shijiazhuang, China.
Background: Fetal midgut volvulus is a rare disease, with a high risk of potentially life-threatening fetal complications.
Purpose: The aim of this study was to retrospectively analyze the imaging findings of fetal midgut volvulus diagnosed by magnetic resonance imaging (MRI) and explore its value in non-invasive prenatal diagnosis.
Methods: A retrospective collection of data from 156 fetuses suspected of intestinal obstruction by ultrasound examination in our hospital was conducted.
Unlabelled: Sensory filtering - prioritizing relevant stimuli while ignoring irrelevant ones - is crucial for animals to adapt and survive in complex environments. While this phenomenon has been primarily studied in organisms with complex nervous systems, it remains unclear whether simpler organisms also possess such capabilities. Here, we studied temporal information processing in , a freshwater planarian flatworm with a primitive nervous system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!