Purpose: To compare the effects of anisotropic and Gaussian smoothing on the outcomes of diffusion tensor imaging (DTI) voxel-based (VB) analyses in the clinic, in terms of signal-to-noise ratio (SNR) enhancement and directional information and boundary structures preservation.
Materials And Methods: DTI data of 30 Alzheimer's disease (AD) patients and 30 matched control subjects were obtained at 3T. Fractional anisotropy (FA) maps with variable degrees and quality (Gaussian and anisotropic) of smoothing were created and compared with an unsmoothed dataset. The two smoothing approaches were evaluated in terms of SNR improvements, capability to separate differential effects between patients and controls by a standard VB analysis, and level of artifacts introduced by the preprocessing.
Results: Gaussian smoothing regionally biased the FA values and introduced a high variability of results in clinical analysis, greatly dependent on the kernel size. On the contrary, anisotropic smoothing proved itself capable of enhancing the SNR of images and maintaining boundary structures, with only moderate dependence of results on smoothing parameters.
Conclusion: Our study suggests that anisotropic smoothing is more suitable in DTI studies; however, regardless of technique, a moderate level of smoothing seems to be preferable considering the artifacts introduced by this manipulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.22040 | DOI Listing |
In this study, TaO was obliquely deposited on a polymer grating, resulting in a nanostructured thin film (NTF) with pronounced anisotropic optical properties. We measured and compared the principal indices and principal axes orientations of NTFs grown on both a grating and a smooth glass substrate. By adjusting the deposition angle, we observed a significant variation in the columnar angle and principal indices of the NTF on the grating, compared to the NTF on a smooth surface.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Department of Modern Mechanical Engineering, Waseda University 3-4-1 Ookubo Shinhuku-ku Tokyo Japan
The diffusion motions of individual polymer aggregates in disordered porous media were visualized using the single-particle tracking (SPT) method because the motions inside porous media play important roles in various fields of science and engineering. In the aggregates diffused on the surfaces of pores, continuous adsorption and desorption processes were observed. The relationship between the size of the aggregates and pore size was analysed based on diffusion coefficients, moment scaling spectrum (MSS) slope analysis, and diffusion anisotropy analysis.
View Article and Find Full Text PDFUltrasonics
January 2025
Department of Civil Engineering and Architecture, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia. Electronic address:
Pipe bends are recognized as critical areas susceptible to wall thinning, a phenomenon instigated by abrupt changes in the fluid flow direction and velocity. Conventional monitoring techniques for bends typically depend on localized ultrasonic measurements of thickness. While these methods are effective, they can be time-consuming compared to the use of permanently installed transducers, a strategy employed in guided wave tomography (GWT).
View Article and Find Full Text PDFNat Commun
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
Control of crack propagation is crucial to make tougher heterogeneous materials. As a crack interacts with material heterogeneities, its front distorts and adopts complex tortuous configurations. While the behavior of smooth cracks with straight fronts in homogeneous materials is well understood, the toughening by rough cracks with tortuous fronts in heterogeneous materials remains unsolved.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory for Multiscale Material Modelling, Syracuse University, 151L Link Hall, Syracuse, NY, 13244, USA.
Bamboo culm has been widely used in engineering for its high strength, lightweight, and low cost. Its outermost epidermis is a smooth and dense layer that contains cellulose, silica particles, and stomata and acts as a water and mechanical barrier. Recent experimental studies have shown that the layer has a higher mechanical strength than other inside regions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!