The cycP gene encoding a periplasmic cytochrome c' from the denitrifying beta-proteobacterium Achromobacter xylosoxidans was characterized. The genes flanking cycP encode components of a mobile genetic element characteristic of the beta-proteobacteria, suggesting that cycP has inserted within a transposon or insertion element. The gene therefore does not form part of a denitrification operon or gene cluster. The level of expression of the cycP gene and the level of synthesis of its corresponding gene product were found to increase by maximally 3-fold anaerobically. Expression of cycP appears to occur mainly by non-specific read-through transcription from portions of the insertion element. Conditions were developed for high-level overproduction of cytochrome c' in Escherichia coli, which resulted in signal peptide cleavage concomitant with secretion of the protein into the periplasm. Using a single-step purification, 20-30 mg of pure protein were isolated from a 1-litre culture. Based on UV-visible spectrophotometry the dimeric protein was shown to have a full complement of haem and to be indistinguishable from the native protein purified from A. xylosoxidans. This system provides an excellent platform to facilitate biochemical and structural dissection of the mechanism underlying the novel specificity of NO binding to the proximal face of the haem.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000287989DOI Listing

Publication Analysis

Top Keywords

cycp gene
12
achromobacter xylosoxidans
8
cytochrome escherichia
8
escherichia coli
8
insertion element
8
expression cycp
8
gene
6
cycp
5
characterization cycp
4
gene expression
4

Similar Publications

Cyclophosphamide (CYCP), a synthetic alkylating antineoplastic, disrupts both cancerous and non-cancerous cells to cause cancer regression and multi organotoxicity respectively. CYCP-induced hepatotoxicity is rare but possible. Evidence has shown that naringin has several beneficial potentials against oxidative stress, inflammation, and fibrosis.

View Article and Find Full Text PDF

Whitefly is a global invasive pest that causes substantial losses to agricultural crops worldwide either by direct feeding or vectoring numerous plant viruses. Management with insecticides remains a big challenge due to its rapid resistance development potential as well as the impact of these chemicals on non-target organisms. Thus, in search of alternate and novel pest management strategies RNA interference (RNAi) has come up as potential future tool in this direction.

View Article and Find Full Text PDF

The cycP gene encoding a periplasmic cytochrome c' from the denitrifying beta-proteobacterium Achromobacter xylosoxidans was characterized. The genes flanking cycP encode components of a mobile genetic element characteristic of the beta-proteobacteria, suggesting that cycP has inserted within a transposon or insertion element. The gene therefore does not form part of a denitrification operon or gene cluster.

View Article and Find Full Text PDF

Modulation of NO binding to cytochrome c' by distal and proximal haem pocket residues.

J Biol Inorg Chem

May 2008

Molecular Biophysics Group, STFC Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK.

We have cloned and expressed the cycP gene encoding cytochrome c' from Alcaligenes xylosoxidans and generated mutations in Arg-124 and Phe-59, residues close to the haem, to probe their involvement in modulating the unusual spin-state equilibrium of the haem Fe and the unique proximal mode of binding of NO to form a stable five-coordinate adduct. Arg-124 is located in the proximal pocket of the haem and forms a hydrogen bond to the stable five-coordinated bound NO. Phe-59 provides steric hindrance at the distal face where NO binds initially to form a six-coordinate adduct.

View Article and Find Full Text PDF

We have analyzed the extent of regulation by the nitric oxide (NO)-sensitive repressor NsrR from Neisseria meningitidis MC58, using microarray analysis. Target genes that appeared to be regulated by NsrR, based on a comparison between an nsrR mutant and a wild-type strain, were further investigated by quantitative real-time PCR, revealing a very compact set of genes, as follows: norB (encoding NO reductase), dnrN (encoding a protein putatively involved in the repair of nitrosative damage to iron-sulfur clusters), aniA (encoding nitrite reductase), nirV (a putative nitrite reductase assembly protein), and mobA (a gene associated with molybdenum metabolism in other species but with a frame shift in N. meningitidis).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!