Efficient synthesis of renewable fuels remains a challenging and important line of research. We report a strategy by which aqueous solutions of gamma-valerolactone (GVL), produced from biomass-derived carbohydrates, can be converted to liquid alkenes in the molecular weight range appropriate for transportation fuels by an integrated catalytic system that does not require an external source of hydrogen. The GVL feed undergoes decarboxylation at elevated pressures (e.g., 36 bar) over a silica/alumina catalyst to produce a gas stream composed of equimolar amounts of butene and carbon dioxide. This stream is fed directly to an oligomerization reactor containing an acid catalyst (e.g., H ZSM-5, Amberlyst-70), which couples butene monomers to form condensable alkenes with molecular weights that can be targeted for gasoline and/or jet fuel applications. The effluent gaseous stream of CO2 at elevated pressure can potentially be captured and then treated or sequestered to mitigate greenhouse gas emissions from the process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1184362 | DOI Listing |
Small
January 2025
Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, P. R. China.
Metal-organic frameworks (MOFs) are rigorously investigated as promising candidates for CO capture and conversion. MOF-on-MOF heterostructures integrate bolstered charger carrier separation with the intrinsic advantages of MOF components, exhibiting immense potential to substantially escalate the efficiency of photocatalytic CO reduction (CORR). However, the structural and compositional complexity poses significant challenges to the controllable development of these heterostructures.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
Gold nanoparticles (AuNPs) have been widely used as efficient and environmentally friendly catalysts due to their high specific surface area and abundant active sites. However, AuNP-based catalytic systems face several challenges, including the instability of AuNPs during the reaction, the difficulty in monitoring the process, which can easily result in insufficient reaction due to short reaction time or waste of resources due to long reaction time, as well as issues of catalyst recovery. This study proposes a novel catalyst integrating various functions, such as high stability, the capacity for real-time monitoring of the catalytic process, and rapid recycling.
View Article and Find Full Text PDFACS Nano
January 2025
School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
Core-shell structures demonstrate superior capability in customizing properties across multiple scales, offering valuable potential in catalysis, medicine, and performance materials. Integrating functional nanoparticles in a spatially controlled manner is particularly appealing for developing sophisticated architectures that support heterogeneous characteristics and tandem reactions. However, creating such complex structures with site-specific features remains challenging due to the dynamic microenvironment during the shell-forming process, which considerably impacts colloidal particle assembly.
View Article and Find Full Text PDFNano Lett
January 2025
Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen 518110, China.
Efficient oxygen evolution reaction (OER) catalysts with fast kinetics, high efficiency, and stability are essential for scalable green production of hydrogen. The rational design and fabrication of catalysts play a decisive role in their catalytic behavior. This work presents a high-entropy catalyst, FeCoNiCuMo-O, synthesized via carbothermal shock.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry and Chemical Engineering, State Key Laboratory of Polyolefins and Catalysis, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.
Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!