Background: It is well known that reducing tissue temperature changes sensory and motor nerve conduction. However, few studies have compared the effect of different cold modalities on nerve conduction parameters.
Objective: The purpose of this study was to compare the effects of ice pack, ice massage, and cold water immersion on the conduction parameters of the sural (sensorial) and tibial motor nerves.
Design: An experimental study was conducted in which the participants were randomly assigned to 1 of 3 intervention groups (n=12 per group). Independent variables were cold modality and pre- and post-cooling measurement time. Dependent variables were skin temperature and nerve conduction parameters.
Methods: Thirty-six people who were healthy, with a mean (SD) age of 20.5 (1.9) years, participated in the study. Each group received 1 of the 3 cold modalities, applied to the right calf region for 15 minutes. Skin temperature and nerve conduction parameters were measured before and immediately after cooling.
Results: All 3 modalities reduced skin temperature (mean=18.2 degrees C). There also was a reduction in amplitude and an increase in latency and duration of the compound action potential. Ice massage, ice pack, and cold water immersion reduced sensory nerve conduction velocity (NCV) by 20.4, 16.7, and 22.6 m/s and motor NCV by 2.5, 2.1, and 8.3 m/s, respectively. Cold water immersion was the most effective modality in changing nerve conduction parameters.
Limitations: The cooling area of the ice massage and ice pack was smaller than that of the cold water immersion. The examiner was not blinded to the treatment group. The population included only participants who were healthy and young.
Conclusions: All 3 modalities were effective in reducing skin temperature and changing sensory conduction at a physiological level that is sufficient to induce a hypoalgesic effect. The results suggest that cold water immersion, as applied in this study, is the most indicated modality for inducing therapeutic effects associated with the reduction of motor nerve conduction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2522/ptj.20090131 | DOI Listing |
Nano Lett
January 2025
National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.
View Article and Find Full Text PDFFront Cell Neurosci
January 2025
Laboratório de Neurodegeneração e Reparo - Departamento de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, HUCFF/UFRJ, Rio de Janeiro, Brazil.
Background: Following transection, nerve repair using the polylactic acid (PLA) conduit is an effective option. In addition, inosine treatment has shown potential to promote nerve regeneration. Therefore, this study aimed to investigate the regenerative potential of inosine after nerve transection and polylactic acid conduit repair.
View Article and Find Full Text PDFFront Neurosci
January 2025
Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Objective: To investigate differences in the microstructure of the spinothalamic tract (STT) white matter in people with chronic neck and shoulder pain (CNSP) using diffusion tensor imaging, and to assess its correlation with pain intensity and duration of the pain.
Materials And Methods: A 3.0T MRI scanner was used to perform diffusion tensor imaging scans on 31 people with CNSP and 24 healthy controls (HCs), employing the Automatic Fiber Segmentation and Quantification (AFQ) method to extract the STT and quantitatively analyze the fractional anisotropy (FA) and mean diffusivity (MD), reflecting the microstructural integrity of nerve fibers.
Drug Des Devel Ther
January 2025
Beijing Tongrentang Technology Development Co., Ltd. Pharmaceutical Factory, Beijing, 100079, People's Republic of China.
Purpose: This study aims to explore the mechanism of Yangxuerongjin pill (YXRJP) in the treatment of diabetic peripheral neuropathy (DPN) by network pharmacology and metabolomics technology combined with animal experiments, and to provide scientific basis for the treatment of DPN.
Methods: In this study, network pharmacology analysis was applied to identify the active compounds, core targets and signal pathways, which might be responsible for the effect of DPN. The DPN model was established by high-fat diet combined with streptozotocin (STZ) injection, and the rats were given administration for 12 weeks.
J Neural Eng
January 2025
Department of Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania, 15213-3815, UNITED STATES.
Objective: Transcranial electrical stimulation (TES) is an effective technique to modulate brain activity and treat diseases. However, TES is primarily used to stimulate superficial brain regions and is unable to reach deeper targets. The spread of injected currents in the head is affected by volume conduction and the additional spreading of currents as they move through head layers with different conductivities, as is discussed in [1].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!