Previous studies on mouse models have indicated that interleukin (IL)-17 and IL-17-producing T-helper (Th) cells are important for pulmonary host defence against Gram-negative bacteria. Human correlates to these findings have not yet been demonstrated. The aim of the present study was to determine whether or not IL-17-producing Th cells are present and whether IL-17 and other Th17-associated cytokines are involved in the immunological response to endotoxin in human airways. Segmental exposure to endotoxin and contralateral exposure to vehicle were performed in the lungs of healthy volunteers, with subsequent bronchoalveolar lavage 12 or 24 h after exposure to study local changes in cytokines and inflammatory cells. Endotoxin exposure increased concentrations of IL-17, IL-22 and their downstream effector molecules, human β-defensin-2 and IL-8/CXC chemokine ligand 8, in bronchoalveolar lavage fluid. Th cells with the capacity to produce IL-17 were found among the bronchoalveolar lavage cells, and expression of IL-17 mRNA correlated with expression of the transcription factor, retinoic-acid-receptor-related orphan receptor C variant 2. Moreover, endotoxin increased the numbers of neutrophils, macrophages and IL-17-producing T-cells, as well as the concentration of the Th17-regulating cytokines, IL-21 and IL-23. In conclusion, IL-17-producing Th cells are present, and IL-17, as well as other Th17-associated cytokines, is involved in the immunological response to endotoxin in human airways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1183/09031936.00170609 | DOI Listing |
Cureus
January 2025
Anesthesiology and Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, NLD.
When a difficult airway is anticipated, awake tracheal intubation can be considered. Usually, low doses of sedatives are administered during this procedure for minimal sedation and anxiolysis, such as midazolam and remifentanil. The newly developed ultra-short-acting benzodiazepine remimazolam has a pharmacokinetic profile that is more suitable for titration during awake tracheal intubation than the long-acting midazolam.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, United States Food and Drug Administration (FDA), Silver Spring, Maryland 20993, United States.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability.
View Article and Find Full Text PDFMycoses
January 2025
Unité de Parasitologie-Mycologie, Département de Prévention, Diagnostic et Traitement Des Infections, CHU Henri Mondor, Assistance Publique Des Hôpitaux de Paris (APHP), Creteil, France.
Background: The airways of patients with cystic fibrosis (pwCF) harbour complex fungal and bacterial microbiota involved in pulmonary exacerbations (PEx) and requiring antimicrobial treatment. Descriptive studies analysing bacterial and fungal microbiota concomitantly are scarce, especially using both culture and high-throughput-sequencing (HTS).
Objectives: We analysed bacterial-fungal microbiota and inter-kingdom correlations in two French CF centres according to clinical parameters and antimicrobial choices.
Gen Physiol Biophys
January 2025
Institute of Histology and Embryology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
Pulmonary alveolar proteinosis (PAP) is a rare disease characterised by excessive accumulation of surfactant components in alveolar macrophages, alveoli, and peripheral airways. The accumulation of surfactant is associated with only a minimal inflammatory response but can lead to the development of pulmonary fibrosis. Three clinical forms of PAP are distinguished - primary, secondary and congenital.
View Article and Find Full Text PDFGenome-wide association studies (GWAS) have identified genetic variants robustly associated with asthma. A potential near-term clinical application is to calculate polygenic risk score (PRS) to improve disease risk prediction. The value of PRS, as part of numerous multi-source variables used to define asthma, remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!