The eVect of high salt concentration (100 mM NaCl) on the organization of photosystem I-light harvesting complex I supercomplexes (PSI-LHCI) of Chlamydomonas reinhardtii was studied. The electron transfer activity was reduced by 39% in isolated PSI-LHCI supercomplexes. The visible circular dichroism (CD) spectra associated with strongly coupled chlorophyll (Chl) dimers were reduced in intensity, indicating that pigment-pigment interactions were disrupted. This data is consistent with results from Xuorescence streak camera spectroscopy, which suggest that red-shifted pigments in the PSI-LHCI antenna had been lost. Denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI reaction center proteins PsaD, PsaE and PsaF were reduced due to salt stress. PsaE is almost completely absent under high salt conditions. It is known that the membrane-extrinsic subunits PsaD and E form the ferredoxin-docking site. Our results indicate that the PSI-LHCI supercomplex is damaged by reactive oxygen species at high salt concentration, with particular impact on the ferredoxin-docking site and the PSILHCI interface.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-009-1097-xDOI Listing

Publication Analysis

Top Keywords

high salt
16
psi-lhci supercomplexes
8
chlamydomonas reinhardtii
8
salt conditions
8
salt concentration
8
ferredoxin-docking site
8
psi-lhci
5
salt
5
structural functional
4
functional changes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!