Imidazolium salts (NHC(ewg)HCl) with electronically variable substituents in the 4,5-position (H,H or Cl,Cl or H,NO(2) or CN,CN) and sterically variable substituents in the 1,3-position (Me,Me or Et,Et or iPr,iPr or Me,iPr) were synthesized and converted into the respective [AgI(NHC)(ewg)] complexes. The reactions of [(NHC)RuCl(2)(CHPh)(py)(2)] with the [AgI(NHC(ewg))] complexes provide the respective [(NHC)(NHC(ewg))RuCl(2)(CHPh)] complexes in excellent yields. The catalytic activity of such complexes in ring-closing metathesis (RCM) reactions leading to tetrasubstituted olefins was studied. To obtain quantitative substrate conversion, catalyst loadings of 0.2-0.5 mol % at 80 degrees C in toluene are sufficient. The complex with the best catalytic activity in such RCM reactions and the fastest initiation rate has an NHC(ewg) group with 1,3-Me,iPr and 4,5-Cl,Cl substituents and can be synthesized in 95 % isolated yield from the ruthenium precursor. To learn which one of the two NHC ligands acts as the leaving group in olefin metathesis reactions two complexes, [(FL-NHC)(NHC(ewg))RuCl(2)(CHPh)] and [(FL-NHC(ewg))(NHC)RuCl(2)(CHPh)], with a dansyl fluorophore (FL)-tagged electron-rich NHC ligand (FL-NHC) and an electron-deficient NHC ligand (FL-NHC(ewg)) were prepared. The fluorescence of the dansyl fluorophore is quenched as long as it is in close vicinity to ruthenium, but increases strongly upon dissociation of the respective fluorophore-tagged ligand. In this manner, it was shown for ring-opening metathesis ploymerization (ROMP) reactions at room temperature that the NHC(ewg) ligand normally acts as the leaving group, whereas the other NHC ligand remains ligated to ruthenium.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200903275DOI Listing

Publication Analysis

Top Keywords

nhc ligand
12
[nhcnhcewgrucl2chph] complexes
8
ring-closing metathesis
8
leading tetrasubstituted
8
tetrasubstituted olefins
8
variable substituents
8
[aginhcewg] complexes
8
catalytic activity
8
rcm reactions
8
acts leaving
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!