The purpose of this study was to explore the relationship between electroencephalogram (EEG) phase reset in autism spectrum disorder (ASD) subjects as compared to age matched control subjects. The EEG was recorded from 19 scalp locations from 54 autistic subjects and 241 control subjects ranging in age from 2.6 years to 11 years. Complex demodulation was used to compute instantaneous phase differences between all pairs of electrodes and the 1st and 2nd derivatives were used to measure phase reset by phase shift duration and phase lock duration. In both short (6 cm) and long (21-24 cm) inter-electrode distances phase shift duration in ASD subjects was significantly shorter in all frequency bands but especially in the alpha-1 frequency band (8-10 Hz) (p < .0001). Phase lock duration was significantly longer in the alpha-2 frequency band (10-12 Hz) in ASD subjects (p < .0001). An anatomical gradient was present with the occipital-parietal regions the most significant. The findings in this study support the hypothesis that neural resource recruitment occurs in the lower frequency bands and especially the alpha-1 frequency band while neural resource allocation occurs in the alpha-2 frequency band. The results are consistent with a general GABA inhibitory neurotransmitter deficiency resulting in reduced number and/or strength of thalamo-cortical connections in autistic subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/87565640903265178 | DOI Listing |
J Neurosci
January 2025
Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Germany
Recordings from Parkinson's disease (PD) patients typically show strong beta-band oscillations (13-35Hz), which can be modulated by deep brain stimulation (DBS). While high-frequency DBS (>100Hz) ameliorates motor symptoms and reduces beta activity in basal ganglia and motor cortex, the effects of low-frequency DBS (<30Hz) are less clear. Clarifying these effects is relevant for the debate about the role of beta oscillations in motor slowing, which might be causal or epiphenomenal.
View Article and Find Full Text PDFBehav Brain Res
January 2025
College of Electronic & Information Engineering, Hebei University, Baoding, China.
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with an unclear pathogenesis to date. Neurofeedback (NFB) had shown therapeutic effects in patients with ASD. In this study,we analyzed the brain functional networks of children with ASD and investigated the impact of NFB targeting the beta rhythm training on these networks.
View Article and Find Full Text PDFTalanta
January 2025
State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
Research on metasurface sensors with high sensitivity, strong specificity, good biocompatibility and strong integration is the key to promote the application of terahertz waves in the field of biomedical detection. However, traditional metallic terahertz metasurfaces have shortcomings such as poor biocompatibility and large ohmic loss in the terahertz frequency band, impeding their further application and integration in the field of biosensing detection. Here, we overcome this challenge by proposing a high-performance terahertz metasurface based on gold nanoparticles and single-walled carbon nanotubes composite film.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Department of Communication Sciences and Disorders, Baylor University, Waco, TX.
Purpose: The aim of this study was to measure the effects of frequency spacing (i.e., F2 minus F1) on spectral integration for vowel perception in simulated bilateral electric-acoustic stimulation (BiEAS), electric-acoustic stimulation (EAS), and bimodal hearing.
View Article and Find Full Text PDFJ Clin Neurophysiol
December 2024
Human Brain Mapping Program, University of Pittsburgh Medical Centre, Pittsburgh, Pennsylvania, U.S.A.; and.
Objectives: Our study aimed to compare signal characteristics of subdural electrodes (SDE) and depth stereo EEG placed within a 5-mm vicinity in patients with drug-resistant epilepsy. We report how electrode design and placement collectively affect signal content from a shared source between these electrode types.
Methods: In subjects undergoing invasive intracranial EEG evaluation at a surgical epilepsy center from 2012 to 2018, stereo EEG and SDE electrode contacts placed within a 5-mm vicinity were identified.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!