Electrochemical deposition of minerals is a unique technology for artificial reef constructions, relying on calcium carbonate (CaCO3) build-up over metallic structures through electrolysis of seawater. The present study traces the first 72 h following electric current termination on bacterial biofilm build-up on a metallic net covered with CaCO3. 16S rRNA clone libraries indicated a dynamic succession. Proteobacteria and Bacteroidetes were evident at all sampling times while Cyanobacteria appeared only within the first 8 h. A significant increase in total organic carbon (TOC) and total protein was observed after 48 h with a significant correlation (R(2) = 0.74), indicating TOC is a good tool for characterizing initial biofilm formation. 18S rRNA gene sequences obtained 72 h following current termination indicated a significant presence of Cnidarians (51%). Understanding the dynamics among primary bacterial settlers is important because they play a crucial role in driving the colonization of sessile invertebrate communities on artificial, as well as natural surfaces.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927010903097204DOI Listing

Publication Analysis

Top Keywords

initial biofilm
8
biofilm formation
8
metallic net
8
build-up metallic
8
current termination
8
conditioning film
4
film initial
4
formation electrochemical
4
electrochemical caco3
4
caco3 deposition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!