Patients with focal lesions to the left inferior frontal gyrus (LIFG; BA 44/45) exhibit difficulty with language production and comprehension tasks, although the nature of their impairments has been somewhat difficult to characterize. No reported cases suggest that these patients are Broca's aphasics in the classic agrammatic sense. Recent case studies, however, do reveal a consistent pattern of deficit regarding their general cognitive processes: they are reliably impaired on tasks in which conflicting representations must be resolved by implementing top-down cognitive control (e.g., Stroop; memory tasks involving proactive interference). In the present study, we ask whether the language production and comprehension impairments displayed by a patient with circumscribed LIFG damage can best be understood within a general conflict resolution deficit account. We focus on one patient in particular--patient I.G.--and discuss the implications for language processing abilities as a consequence of a general cognitive control disorder. We compared I.G. and other frontal patients to age-matched control participants across four experiments. Experiment 1 tested participants' general conflict resolution abilities within a modified working memory paradigm in an attempt to replicate prior case study findings. We then tested language production abilities on tasks of picture naming (Experiment 2) and verbal fluency (Experiment 3), tasks that generated conflict at the semantic and/or conceptual levels. Experiment 4 tested participants' sentence processing and comprehension abilities using both online (eye movement) and offline measures. In this task, participants carried out spoken instructions containing a syntactic ambiguity, in which early interpretation commitments had to be overridden in order to recover an alternative, intended analysis of sentence meaning. Comparisons of I.G.'s performance with frontal and healthy control participants supported the following claim: I.G. suffers from a general conflict resolution impairment, which affects his ability to produce and comprehend language under specific conditions--namely, when semantic, conceptual, and/or syntactic representations compete and must be resolved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3791076 | PMC |
http://dx.doi.org/10.1080/02643290903519367 | DOI Listing |
Plast Reconstr Surg Glob Open
January 2025
Department of Computer Science, Johns Hopkins University, Baltimore, MD.
Artificial intelligence (AI) scribe applications in the healthcare community are in the early adoption phase and offer unprecedented efficiency for medical documentation. They typically use an application programming interface with a large language model (LLM), for example, generative pretrained transformer 4. They use automatic speech recognition on the physician-patient interaction, generating a full medical note for the encounter, together with a draft follow-up e-mail for the patient and, often, recommendations, all within seconds or minutes.
View Article and Find Full Text PDFInt J Lang Commun Disord
January 2025
School of Education, Communication and Language Sciences, Newcastle University, Newcastle upon Tyne, UK.
Background: Children born with cleft palate ± lip (CP ± L) are at risk of speech sound disorder (SSD). Up to 40% continue to have SSD at age 5-6 years. These difficulties are typically described as articulatory in nature and often include cleft speech characteristics (CSC) hypothesized to result from structural differences.
View Article and Find Full Text PDFJ Med Syst
January 2025
Edward J. Bloustein School of Planning and Public Policy, Rutgers, The State University of New Jersey, 255, Civic Square Building 33 Livingston Ave #400, New Brunswick, NJ, 08901, USA.
Generative Artificial Intelligence (Gen AI) has transformative potential in healthcare to enhance patient care, personalize treatment options, train healthcare professionals, and advance medical research. This paper examines various clinical and non-clinical applications of Gen AI. In clinical settings, Gen AI supports the creation of customized treatment plans, generation of synthetic data, analysis of medical images, nursing workflow management, risk prediction, pandemic preparedness, and population health management.
View Article and Find Full Text PDFJ Med Syst
January 2025
Department of Anesthesiology, Perioperative and Pain Medicine, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1010, New York, NY, 10029, USA.
Anesthetic gases contribute to global warming. We described a two-year performance improvement project to examine the association of individualized provider dashboard feedback of anesthetic gas carbon dioxide equivalent (CDE) production and median perioperative fresh gas flows (FGF) during general anesthetics during perioperative management. Using a custom structured query language (SQL) query, hourly CDE for each anesthetic gas and median FGF were determined.
View Article and Find Full Text PDFMicrob Ecol
January 2025
MikroIker Research Group, Immunology, Microbiology and Parasitology Department, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.
The Añana Salt Valley (northern Spain) is a continental saltern consisting of a series of natural springs that have been used for salt production for at least 7000 years. This habitat has been relatively understudied; therefore, prokaryotic diversity was investigated through Illumina-based 16S rRNA gene sequencing to determine if the waters within the valley exhibit distinctive microbiological characteristics. Two main types of water were found in the valley: salty (approximately 200 g/L salinity) from the diapiric structure and brackish (≤ 20 g/L salinity) from shallow streams.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!