The adhesion of Staphylococcus epidermidis, Escherichia coli, and Candida albicans on mucin coatings was evaluated to explore the feasibility of using the coating to increase the infection resistance of biomaterials. Coatings of bovine submaxillary mucin (BSM) were deposited on a base layer consisting of a poly(acrylic acid-b-methyl methacrylate) (PAA-b-PMMA) diblock copolymer. This bi-layer system exploits the mucoadhesive interactions of the PAA block to aid the adhesion of mucin to the substratum, whereas the PMMA block prevents dissolution of the coating in aqueous environments. The thickness of the mucin coating was adjusted by varying the pH of the solution from which it was deposited. Thin mucin coatings decreased the numbers of bacteria but increased the numbers of C. albicans adhering to the copolymer and control surfaces. Increasing the mucin film thickness resulted in a further lowering of the density of adhering S. epidermidis cells, but it did not affect the density of E. coli. In contrast, the density of C. albicans increased with an increase in mucin thickness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927011003646809 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!