Purpose: In this work, the aim was to prepare and characterize a magnetofluorescent polymeric nanoparticle for prostate cancer imaging in vivo.

Methods: Glycol chitosan (GC) was chemically modified with N-acetyl histidine (NAHis) as a hydrophobic moiety, and bombesin (BBN) was conjugated to the hydrophobically modified GC for use in targeting gastric-releasing peptide receptors (GRPR) overexpressed in prostate cancer cells. NAHis-GC conjugates were labeled with the near-infrared (NIR) fluorophore Cy5.5 (C-NAHis-GC conjugate).

Results: BBN-conjugated C-NAHis-GC nanoparticles (BC-NAHis-GC nanoparticles) showed significantly higher binding to the PC3 cell surface than nanoparticles without BBN, and the cellular binding was clearly inhibited by BBN. The tumor-to-muscle ratios of C- and BC-NAHis-GC nanoparticles were 2.26 +/- 0.66 and 5.37 +/- 0.43, respectively. The tumor accumulation of BC-NAHis-GC nanoparticles was clearly reduced by co-injection of BBN. Further, iron oxide nanoparticles (IO) were loaded into BC-NAHis-GC nanoparticles to investigate the possibility of use as a probe for MRI. IO-BC-NAHis-GC nanoparticles were well observed in the PC3 cells, and the blocking with BBN significantly reduced the cellular binding of the nanoparticles.

Conclusion: These results demonstrate that the BBN conjugation to NAHis-GC nanoparticles improves their tumor accumulation in PC3-bearing mice in comparison to nanoparticles without BBN, suggesting that BC-NAHis-GC nanoparticles may be useful for prostate cancer imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-010-0072-3DOI Listing

Publication Analysis

Top Keywords

bc-nahis-gc nanoparticles
20
nanoparticles
12
prostate cancer
12
magnetofluorescent polymeric
8
cancer imaging
8
nanoparticles bbn
8
cellular binding
8
tumor accumulation
8
bbn
7
bc-nahis-gc
5

Similar Publications

Purpose: In this work, the aim was to prepare and characterize a magnetofluorescent polymeric nanoparticle for prostate cancer imaging in vivo.

Methods: Glycol chitosan (GC) was chemically modified with N-acetyl histidine (NAHis) as a hydrophobic moiety, and bombesin (BBN) was conjugated to the hydrophobically modified GC for use in targeting gastric-releasing peptide receptors (GRPR) overexpressed in prostate cancer cells. NAHis-GC conjugates were labeled with the near-infrared (NIR) fluorophore Cy5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!