The perinucleolar compartment.

Cold Spring Harb Perspect Biol

Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.

Published: February 2010

The perinucleolar compartment (PNC) is a subnuclear body characterized by its location to the periphery of the nucleolus. The PNC is a dynamic structure and is highly enriched in RNA-binding proteins and pol III RNA. The structural stability of the PNC is dependent on continuous pol III transcription and the presence of key proteins. The PNC is associated with malignancy both in vitro and in vivo and its presence positively correlates with metastatic capacity, making it a potential cancer marker. Recent studies also suggest an association between the PNC and a specific DNA locus, and ongoing PNC research continues to focus on determining the structure and function of the PNC to understand its role in cancer. This article summarizes the current understanding of PNC structure and function with an emphasis on the association of PNC and malignancy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2828281PMC
http://dx.doi.org/10.1101/cshperspect.a000679DOI Listing

Publication Analysis

Top Keywords

pnc
9
perinucleolar compartment
8
pol iii
8
association pnc
8
structure function
8
compartment perinucleolar
4
compartment pnc
4
pnc subnuclear
4
subnuclear body
4
body characterized
4

Similar Publications

Vertical flow immunoassay for multiplex mycotoxins based on photonic nitrocellulose and SERS nanotags.

Food Chem X

January 2025

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.

Here, we report a SERS based VFA using PNC as a sensing substrate for highly sensitive multiplex mycotoxins detection. The PNC was fabricated by filtration-based self-assembled monodisperse SiO NPs on a filter membrane as a template, and the obtained PNC had an ordered complementary inverse opal structure. In parallel, three kinds of Raman dyes encoding Au@Ag, Au@Ag and Au@Ag SERS nanotags were synthesized for the detection of OTA, AFB1 and ZON.

View Article and Find Full Text PDF

Introduction: Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication.

Methods: Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed.

View Article and Find Full Text PDF

Background: Newborn screening (NBS) programs have significantly improved the health and outcomes of patients with inherited metabolic disorders (IMDs). Methods based on liquid chromatography/mass spectrometry (LC-MS/MS) analysis are viewed worldwide as the gold standard procedure for the expanded NBS programs for these disorders. Advanced molecular technologies point to genomic sequencing as an alternative and feasible strategy for the screening of genetic diseases, including IMDs.

View Article and Find Full Text PDF

Modulating Electronic Density of Single-Atom Ni Center by Heteroatoms for Efficient CO Electroreduction.

Small

January 2025

CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Single-atom catalysts (SACs) with unique geometric and electronic configurations have triggered great interest in many important reactions. However, controllably modulating the electronic structure of metal centers to enhance catalytic performance remains a challenge. Here, the electronic structure of Ni centers over Ni-NC SACs by introducing electron-rich phosphorus or electron-deficient boron for electrochemical CO reduction (CORR) is systematically tailored.

View Article and Find Full Text PDF

As a potential alternative to next-generation LIBs, carbonous materials have garnered significant attention as anode materials for potassium-ion batteries due to their low cost and environmental friendliness. However, carbonaceous materials cannot fulfill the demand of anode for PIBs, due to volume expansion and poor stability during charging/discharging process. It is well-known that N doping can provide active sites for K-storage, and expand the layer distance between graphite layers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!